Algorithms and Probability

Week 5

Exercise Sheet 2

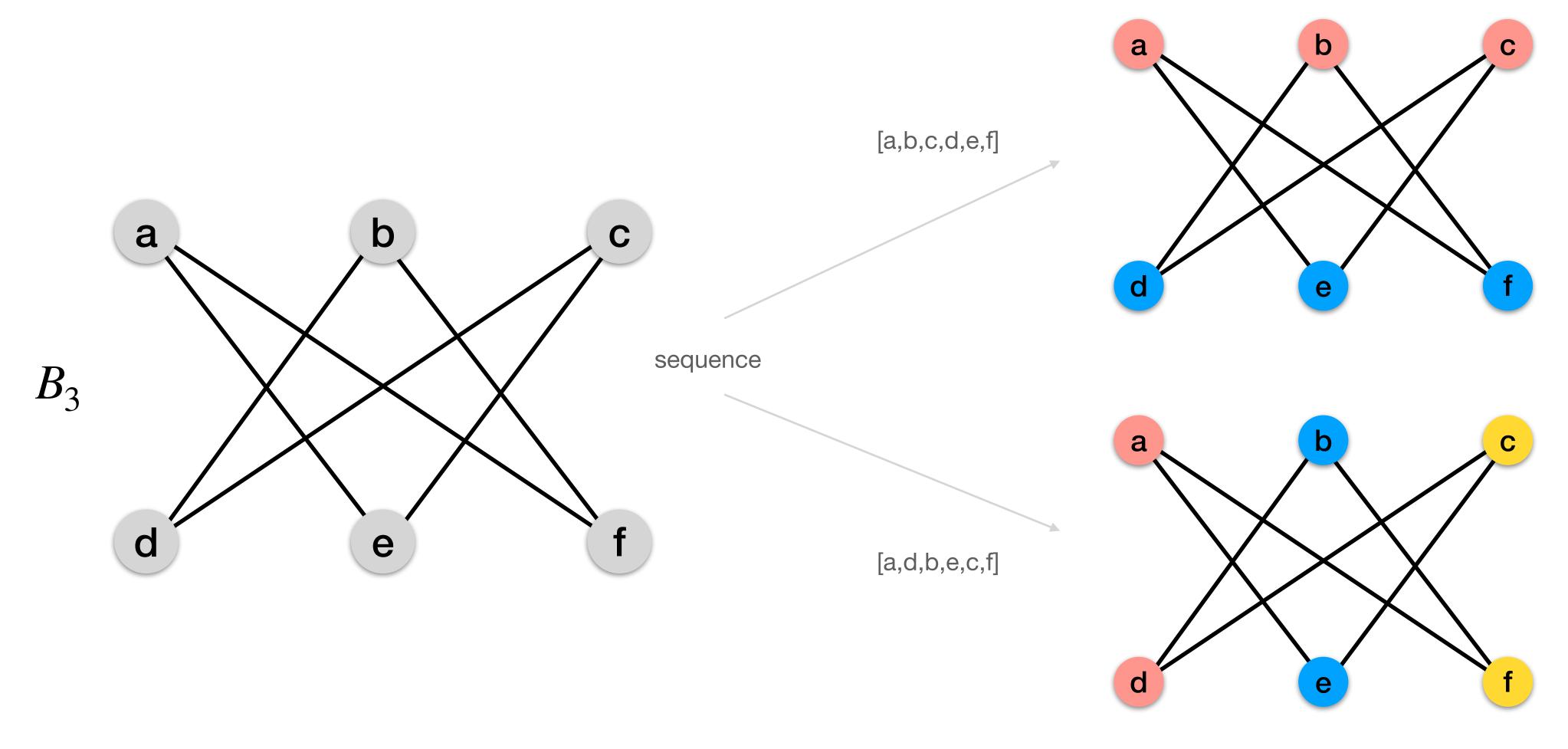
Greedy coloring

GREEDY-FÄRBUNG (G)

- 1: wähle eine beliebige Reihenfolge der Knoten: $V = \{v_1, \dots, v_n\}$
- 2: $c[v_1] \leftarrow 1$
- 3: for i = 2 to n do
- 4: $c[\nu_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c(u) \text{ für alle } u \in N(\nu_i) \cap \{\nu_1, \ldots, \nu_{i-1}\}\}$

Beispiel 1.61. Betrachten wir den Graphen B_n mit 2n Knoten, der aus dem vollständigen bipartiten Graphen $K_{n,n}$ entsteht, indem man die Kanten zwischen gegenüberliegenden Knoten entfernt. Da der Graph B_n bipartit ist, könnte er eigentlich mit zwei Farben gefärbt werden; es ist aber nicht schwer einzusehen, dass es auch eine Reihenfolge der Knoten gibt, für die der Greedy-Algorithmus n Farben benötigt (Übung!).

Exercise



GREEDY-FÄRBUNG (G)

Coloring

 $c[\nu_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c(u) \text{ für alle } u \in N(\nu_i) \cap \{\nu_1, \ldots, \nu_{i-1}\}\}$

Beobachtung:

Gilt für die (gewählte) Reihenfolge $|N(v_i) \cap \{v_1, ..., v_{i-1}\}| \le k \quad \forall \ 2 \le i \le n$, dann benötigt der Greedy-Algorithmus höchstens k+1 viele Farben.

We want to minimize $|N(v_i) \cap \{v_1, ..., v_{i-1}\}| \forall 2 \le i \le n$.

The bigger i gets, the bigger $|\{v_1, ..., v_{i-1}\}|$ becomes.

Have v_i where $|N(v_i)|$ is small, at the end of the sequence.

Heuristik:

v_n := Knoten vom kleinsten Grad. Lösche v_n.

 v_{n-1} := Knoten vom kleinsten Grad im Restgraph. Lösche v_{n-1} . Iteriere.

Heuristik:

 v_n := Knoten vom kleinsten Grad. Lösche v_n .

 v_{n-1} := Knoten vom kleinsten Grad im Restgraph. Lösche v_{n-1} . Iteriere.

Korollar:

G=(V,E) zshgd. und es gibt $v \in V$ mit $deg(v) < \Delta(G)$

Proof

⇒ Heuristik (oder Breiten-/Tiefensuche) liefert Reihenfolge, für die der Greedy-Algorithmus höchstens △(G) Farben benötigt

Let $v \in V$ s.t. $\deg(v) < \Delta(G)$.

Start BFS/DFS in ν .

The sequence for the greedy algorithm is the **reverse order** of how we traversed the vertices in G (i.e. $v = v_n$).

Then every v_i , i < n has at least one uncolored neighbor v_j where j > i and thus at most $\Delta(G) - 1$ **colored** neighbors.

We started in v with $\deg(v) < \Delta(G)$, then $v_n = v$ and v_n has at most $\Delta(G) - 1$ colored neighbors. Greedy algorithm needs at most $\Delta(G)$ colors.

We just solved this.

Recommendation

Beispiel 1.62. Sei G = (V, E) ein zusammenhängender Graph mit Maximalgrad $\Delta(G)$. Weiter nehmen wir an, dass es einen Knoten $v \in V$ gibt mit $\deg(v) < \Delta(G)$. Wenn wir jetzt eine Breiten- oder Tiefensuche in v starten und die Knoten in umgekehrter Reihenfolge nummerieren, wie sie vom Algorithmus durchlaufen werden (der Knoten v ist also der Knoten v_n), so hat jeder Knoten v_i mit i < n mindestens einen Nachbarn v_j mit j > i und daher höchstens $\Delta(G) - 1$ gefärbte Nachbarn. Der Knoten v_n hat nach Wahl ebenfalls nur $\Delta(G) - 1$ gefärbte Nachbarn. Der Greedy-Algorithmus benötigt daher für diese Reihenfolge der Knoten höchstens $\Delta(G)$ Farben.

Beispiel 1.63. Sei G = (V, E) ein zusammenhängender k-regulärer Graph, in dem es mindestens einen Artikulationsknoten gibt. Wir wissen bereits aus Abschnitt 1.4.1, dass wir mit einer modifizierten Tiefensuche in Zeit O(|E|) einen solchen Artikulationsknoten ν bestimmen können. Seien V_1, \ldots, V_s die Knotenmengen der Zusammenhangskomponenten von $G - \nu$, wobei $s \geq 2$. Dann erfüllen alle Graphen $G_i := G[V_i \cup \{\nu\}], \ 1 \leq i \leq s$, die Annahme von Beispiel 1.62 – und können daher jeweils mit k Färben gefärbt werden. Durch eventuelles Vertauschen von Farben können wir zudem sicherstellen, dass in allen Graphen G_1, \ldots, G_s der Knoten ν die gleiche Farbe bekommen hat. Die Färbungen der Graphen G_i ergeben daher zusammen eine k-Färbung des Graphen G.

Skript p. 80

Theory Recap

Definition 2.1. Ein diskreter Wahrscheinlichkeitsraum ist bestimmt durch eine Ergebnismenge $\Omega = \{\omega_1, \omega_2, \ldots\}$ von Elementarereignisen. Jedem Elementarereignis ω_i ist eine (Elementar-)Wahrscheinlichkeit $\Pr[\omega_i]$ zugeordnet, wobei wir fordern, dass $0 \leq \Pr[\omega_i] \leq 1$ und

$$\sum_{\omega \in \Omega} \Pr[\omega] = 1.$$

Eine Menge $E \subseteq \Omega$ heisst Ereignis. Die Wahrscheinlichkeit Pr[E] eines Ereignisses ist definiert durch

$$\Pr[\mathsf{E}] := \sum_{\omega \in \mathsf{E}} \Pr[\omega].$$

Ist E ein Ereignis, so bezeichnen wir mit $\bar{E} := \Omega \setminus E$ das Komplementärereignis zu E.

Probability

Note that the set Ω must be countable. In this course we will use mostly finite Ω .

Example

We throw a single, six-sided fair dice once; we observe the number on top.

Q: What is the Ergebnismenge Ω ?

A:
$$\Omega = \{1,2,3,4,5,6\}$$

 \mathbf{Q} : How would you describe the Ereignis E "the dice shows an even number"?

A:
$$E = \{2,4,6\}$$

Q: What is the probability of Ereignis E, i.e. Pr[E]?

A:
$$\Pr[E] = \sum_{\omega \in E} \Pr[\omega] = 1/6 + 1/6 + 1/6 = 1/2.$$

Probability

Lemma 2.2. Für Ereignisse A, B gilt:

1.
$$Pr[\emptyset] = 0$$
, $Pr[\Omega] = 1$.

- 2. $0 \le \Pr[A] \le 1$.
- 3. $Pr[\bar{A}] = 1 Pr[A]$.
- 4. Wenn $A \subseteq B$, so folgt $Pr[A] \le Pr[B]$.

Probability

Satz 2.3 (Additionssatz). Wenn die Ereignisse A_1, \ldots, A_n paarweise disjunkt sind (also wenn für alle Paare $i \neq j$ gilt, dass $A_i \cap A_j = \emptyset$), so gilt

$$\Pr\left[\bigcup_{i=1}^{n} A_i\right] = \sum_{i=1}^{n} \Pr[A_i].$$

Korollar 2.6. (Boolesche Ungleichung, Union Bound) Für Ereignisse A_1, \ldots, A_n gilt

$$\Pr\left[\bigcup_{i=1}^n A_i\right] \leq \sum_{i=1}^n \Pr[A_i].$$

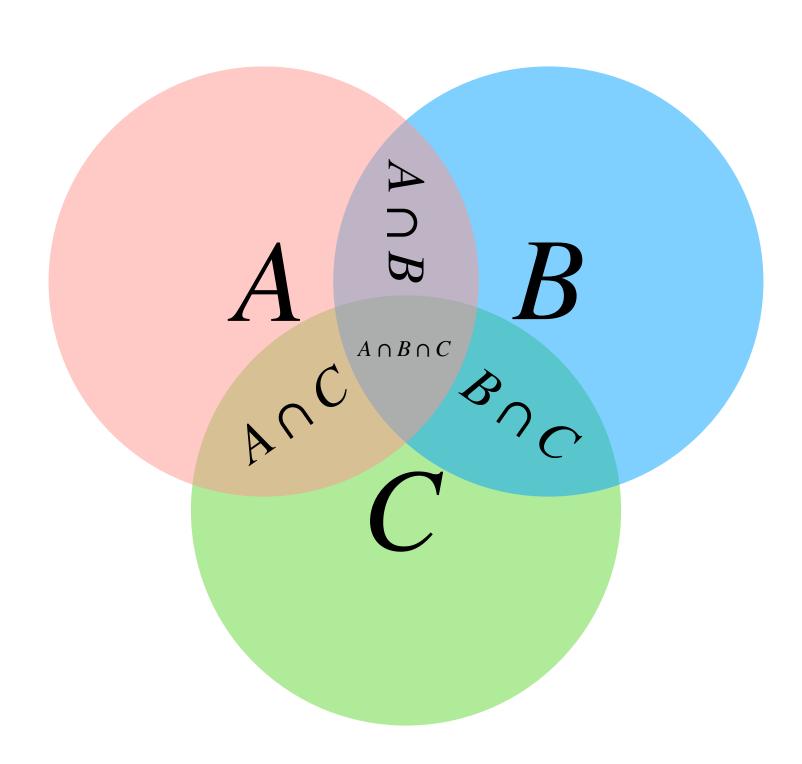
Siebformel

What is the cardinality of $A \cup B$, i.e. what is $|A \cup B|$?

$$\left| \begin{array}{c|c} A & B \\ \hline \end{array} \right| = \left| \begin{array}{c|c} A \\ \hline \end{array} \right| + \left| \begin{array}{c|c} B \\ \hline \end{array} \right| - \left| \begin{array}{c|c} A \\ B \\ \hline \end{array} \right|$$

We have $|A \cup B| = |A| + |B| - |A \cap B|$.

Siebformel



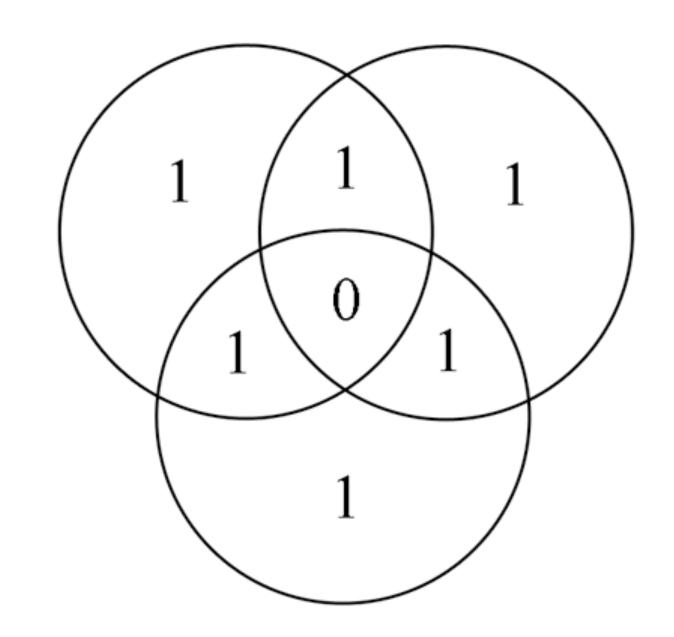
 $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$

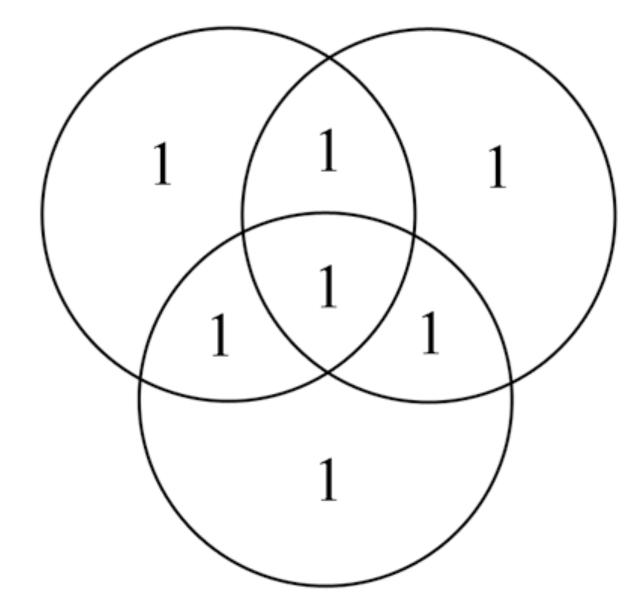
The number indicates how often elements of the particular segments are counted using the expression blow/above.

|A| + |B| + |C|

Siebformel

$$|A| + |B| + |C|$$
 $-|A \cap B| - |A \cap C| - |B \cap C|$





$$|A| + |B| + |C|$$
 $-|A \cap B| - |A \cap C| - |B \cap C|$
 $+|A \cap B \cap C|$

Siebformel

Satz 2.5. (Siebformel, Prinzip der Inklusion/Exklusion) Für Ereignisse A_1, \ldots, A_n ($n \ge 2$) gilt:

$$\begin{array}{lll} \Pr\left[\bigcup_{i=1}^{n}A_{i}\right] & = & \sum_{l=1}^{n}(-1)^{l+1}\sum_{1\leq i_{1}<\dots< i_{l}\leq n}\Pr[A_{i_{1}}\cap\dots\cap A_{i_{l}}]\\ \\ & = & \sum_{i=1}^{n}\Pr[A_{i}]-\sum_{1\leq i_{1}< i_{2}\leq n}\Pr[A_{i_{1}}\cap A_{i_{2}}]\\ \\ & & + \sum_{1\leq i_{1}< i_{2}< i_{3}\leq n}\Pr[A_{i_{1}}\cap A_{i_{2}}\cap A_{i_{3}}]-\dots\\ \\ & & + (-1)^{n+1}\cdot\Pr[A_{1}\cap\dots\cap A_{n}]. \end{array}$$

There are a few different ways we can write this formula, see here: Wikipedia.

Combinatorics

	geordnet	ungeordnet
mit Zurücklegen	n^k	$\binom{n+k-1}{k}$
ohne Zurücklegen	$n^{\underline{k}}$	$\binom{n}{k}$

	geordnet	ungeordnet
mit Zurücklegen	(1,1),(1,2),(1,3) (2,1),(2,2),(2,3) (3,1),(3,2),(3,3)	{1,1}, {1,2}, {1,3} {2,2}, {2,3}, {3,3}
ohne Zurücklegen	(1,2), (1,3), (2,1) (2,3), (3,1), (3,2)	{1, 2}, {1, 3}, {2, 3}

Example: k = 2 and n = 3, e.g. $S = \{1,2,3\}$.

Combinatorics: Intuition

I highly suggest reading the "Kombinatorik kurz und knapp" slides from Prof. Dr. Erich Walter Farkas who teaches the "Wahrscheinlichkeit und Statistik" course this semester.

I will upload the relevant slides on my website.

Example

Szenario: Wir mischen die Karten und geben Spieler A und B jeweils fünf Karten.

⇒
$$\Omega := \{(X,Y) \mid X,Y \subseteq C, X \cap Y = \emptyset, |X| = |Y| = 5\},$$

wobei $C = \{\$, \spadesuit, \heartsuit, \diamondsuit\} \times \{2,3,...,9,10,B,D,K,A\}\}.$ |C|=52

$$|\Omega| = \begin{cases} 52^{5} \cdot 52^{5} \\ \binom{52}{10} \cdot \binom{10}{5} \\ \frac{52!}{5! \cdot 5! \cdot 42!} \\ \binom{52}{5} \cdot \binom{47}{5} \end{cases}$$

Example

Szenario: Wir mischen die Karten und geben Spieler A und B jeweils fünf Karten.

$$\Omega := \{(X,Y) \mid X,Y \subseteq C, X \cap Y = \emptyset, |X| = |Y| = 5,$$
 wobei $C = \{\clubsuit, \spadesuit, \heartsuit, \diamondsuit\} \times \{2,3,\ldots,9,10,B,D,K,A\}\}.$

Beispiel für ein Ereignis: E:= "Spieler A hat vier Asse"

$$= \frac{48 \cdot \binom{47}{5}}{|\Omega|}$$

Conditional Probability

Definition 2.8. A und B seien Ereignisse mit Pr[B] > 0. Die bedingte Wahrscheinlichkeit Pr[A|B] von A gegeben B ist definiert durch

$$Pr[A|B] := \frac{Pr[A \cap B]}{Pr[B]}.$$

"A bedingt auf B" oder "A gegeben B"

Definition 2.8. A und B seien Ereignisse mit Pr[B] > 0. Die bedingte Wahrscheinlichkeit Pr[A|B] von A gegeben B ist definiert durch

$Pr[A|B] := \frac{Pr[A \cap B]}{Pr[B]}.$

Conditional Probability

1. $\Pr[A \mid A] = 1$, because if we know A already happened, then the probability of A happening should be 1.

$$Pr[A | A] = \frac{Pr[A \cap A]}{Pr[A]} = Pr[A]/Pr[A] = 1.$$

2. $\Pr[A \mid \Omega] = \Pr[A]$, since Ω doesn't give us any information about A.

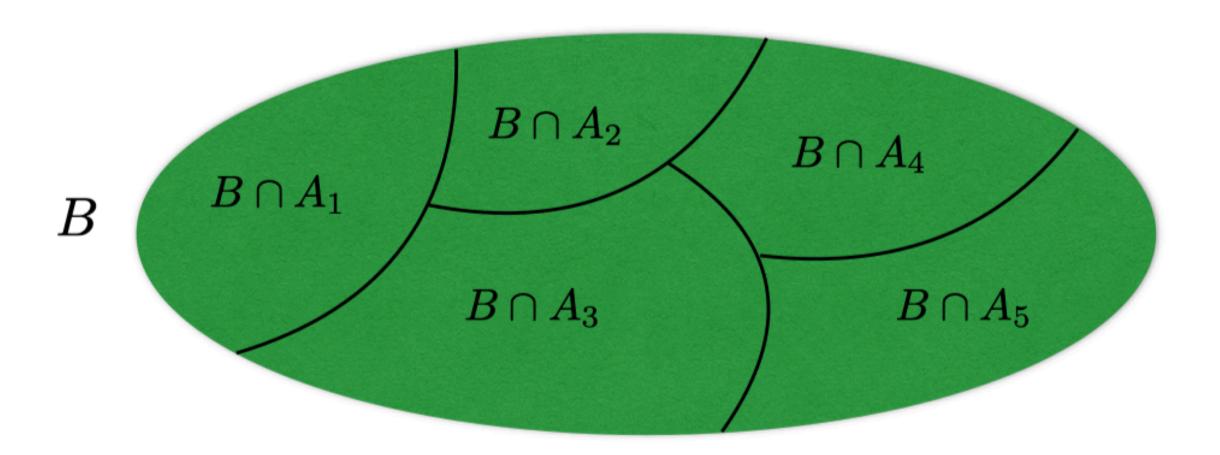
$$\Pr[A \mid \Omega] = \frac{\Pr[A \cap \Omega]}{\Pr[\Omega]} = \Pr[A]/1 = 1.$$

3. If B already happened, then A can only happen if also $A \cap B$ happened, so $\Pr[A \mid B]$ should be proportional to $\Pr[A \cap B]$.

Conditional Probability

Satz 2.13. (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A_1, \ldots, A_n seien paarweise disjunkt und es gelte $B \subseteq A_1 \cup \ldots \cup A_n$. Dann folgt

$$Pr[B] = \sum_{i=1}^{n} Pr[B|A_i] \cdot Pr[A_i].$$

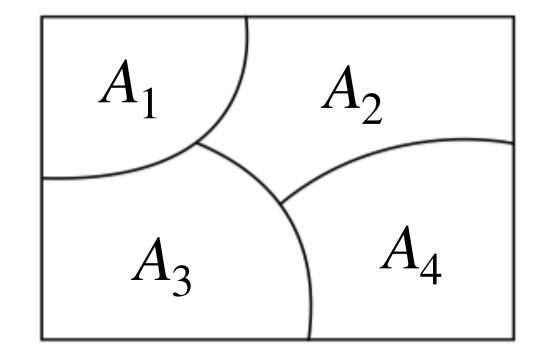


Conditional Probability

Satz 2.13. (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse

 A_1, \ldots, A_n seien paarweise disjunkt und es $A_1 \cup A_2 \cup \ldots \cup A_n = \Omega$, mit $A_i \cap A_j = \emptyset$ für $i \neq j$ Dann folgt

$$Pr[B] = \sum_{i=1}^{n} Pr[B|A_i] \cdot Pr[A_i].$$



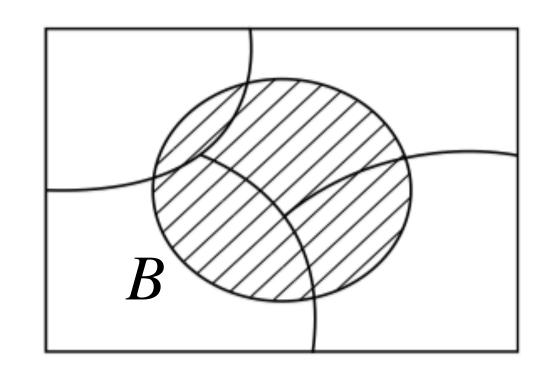


Illustration taken from "Wahrscheinlichkeit und Statistik" slides (Spring 2024), first chapter.

Beispiel 1.30. Eine Urne enthält gleich viele gewöhnliche wie gezinkte Würfel. Bei den gezinkten Würfeln ist die 6 durch eine 7 ersetzt. Man zieht zufällig einen Würfel und würfelt damit.

Wie hoch ist die Wahrscheinlichkeit, dass die gewürfelte Zahl gerade ist?

Conditional Probability

Satz 2.15. (Satz von Bayes) Die Ereignisse A_1, \ldots, A_n seien paarweise disjunkt. Ferner sei $B \subseteq A_1 \cup \cdots \cup A_n$ ein Ereignis mit Pr[B] > 0. Dann gilt für ein beliebiges $i = 1, \ldots, n$

$$\Pr[A_i|B] = \frac{\Pr[A_i \cap B]}{\Pr[B]} = \frac{\Pr[B|A_i] \cdot \Pr[A_i]}{\sum_{j=1}^n \Pr[B|A_j] \cdot \Pr[A_j]}.$$

Independence

Definition 2.18. Die Ereignisse A und B heissen unabhängig, wenn gilt

$$Pr[A \cap B] = Pr[A] \cdot Pr[B].$$

$$\Pr[A \mid B] = \frac{\Pr[A \cap B]}{\Pr[B]} = \frac{\Pr[A] \cdot \Pr[B]}{\Pr[B]} = \Pr[A]$$

"[...] das Vorwissen, dass B eintritt, keinen Einfluss auf die Wahrscheinlichkeit hat, mit der wir das Eintreten von A erwarten.", skript p. 101

Beispiel 1.38. Eine Münze wird zweimal geworfen. Dies wird durch das Laplace-Modell des Grundraums modelliert $\Omega = \{ZZ, ZK, KZ, KK\}$.

Seien

$$A = \{ Kopf beim 1. Wurf \} = \{ KK, KZ \}$$

 $B = \{ Kopf beim 2. Wurf \} = \{ KK, ZK \}$.

Sind A und B unabhängig?

Übung 1.39. Wir werfen zwei voneinander unabhängige Würfel. Dies wird durch das Laplace-Modell des Grundraums modelliert $\Omega=\{1,\ldots,6\}^2$. Betrachten wir folgende Ereignisse

$$\triangleright A = \{\omega = (\omega_1, \omega_2) \mid \omega_1 \in 2\mathbb{N}\}, \text{ erste Augenzahl ist gerade,}$$

$$\triangleright$$
 $C = \{\omega = (\omega_1, \omega_2) \mid \omega_1 + \omega_2 \leq 3\}$, die Summe ist höchstens 3,

Sind A und C unabhängig?

Independence

Definition 2.22. Die Ereignisse A_1, \ldots, A_n heissen *unabhängig*, wenn für alle Teilmengen $I \subseteq \{1, \ldots, n\}$ mit $I = \{i_1, \ldots, i_k\}$ gilt, dass

$$\Pr[A_{i_1} \cap \cdots \cap A_{i_k}] = \Pr[A_{i_1}] \cdots \Pr[A_{i_k}]. \tag{2.2}$$

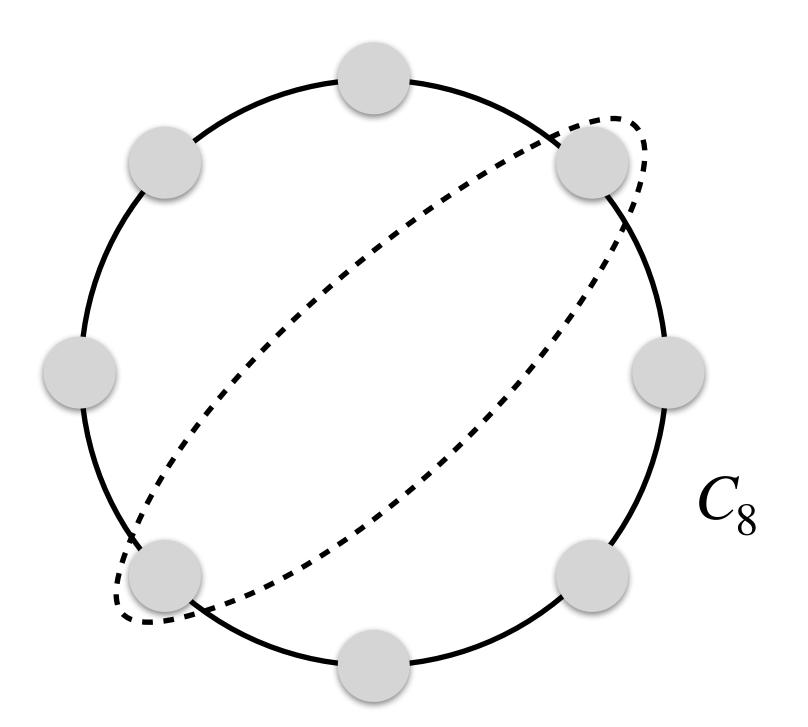
Eine unendliche Familie von Ereignissen A_i mit $i \in \mathbb{N}$ heisst unabhängig, wenn (2.2) für jede endliche Teilmenge $I \subseteq \mathbb{N}$ erfüllt ist.

Beispiel 1.43. Eine faire Münze wird zweimal geworfen. Wir betrachten die Ereignisse

$$A = \{ ext{Kopf bei Wurf 1} \} = \{ ext{KK, KZ} \},$$
 $B = \{ ext{Kopf bei Wurf 2} \} = \{ ext{KK, ZK} \},$
 $C = \{ ext{beide Würfe gleich} \} = \{ ext{KK, ZZ} \}.$

what can we say about the independence of A,B,C?

Consider the cycle graph C_n . Two vertices are chosen randomly. What is the probability that they are neighbors?



Given *n* people, what is the probability that two of them share a birthday?

Assume every year has 365. An Ereignis is of the form $\omega = \{t_1, ..., t_n\}$ where $t_i \in [365]$. Assume that every ω has the same probability.