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Greedy coloring
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Exercise
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Coloring

We want to minimize .


The bigger  gets, the bigger  becomes. 


Have  where  is small, at the end of the sequence.

|N(vi) ∩ {v1, …, vi−1} |∀2 ≤ i ≤ n

i |{v1, …, vi−1} |

vi |N(vi) |
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Proof

Let  s.t. .


Start BFS/DFS in .


The sequence for the greedy algorithm is the reverse order of how we 
traversed the vertices in  (i.e. ).


Then every ,  has at least one uncolored neighbor  where  and thus 
at most  colored neighbors.


We started in  with , then  and  has at most  
colored neighbors. Greedy algorithm needs at most  colors.

v ∈ V deg(v) < Δ(G)

v

G v = vn

vi i < n vj j > i
Δ(G) − 1

v deg(v) < Δ(G) vn = v vn Δ(G) − 1
Δ(G)
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Recommendation
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Skript p. 80

We just solved this.



Theory Recap
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Probability
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Note that the set  must be countable. 
In this course we will use mostly finite 

.

Ω

Ω
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Example

We throw a single, six-sided fair dice once; we observe the number on top.


Q: What is the Ergebnismenge ?


A: 


Q: How would you describe the Ereignis  “the dice shows an even number”?


A: 


Q: What is the probability of Ereignis , i.e. ?


A: .

Ω

Ω = {1,2,3,4,5,6}

E

E = {2,4,6}

E Pr[E]

Pr[E] = ∑
ω∈E

Pr[ω] = 1/6 + 1/6 + 1/6 = 1/2
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Probability
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Probability
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Siebformel

What is the cardinality of , i.e. what is ?A ∪ B |A ∪ B |
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A B A= + B −

A
∩

B

A
∩

B

We have .|A ∪ B | = |A | + |B | − |A ∩ B |
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Siebformel

14

A B

C
A ∩ C

A
∩

B

B ∩ C

A ∩ B ∩ C

|A ∪ B ∪ C | = |A | + |B | + |C | − |A ∩ B | − |A ∩ C | − |B ∩ C | + |A ∩ B ∩ C |
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Siebformel
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|A | + |B | + |C |
− |A ∩ B | − |A ∩ C | − |B ∩ C |

|A | + |B | + |C |
− |A ∩ B | − |A ∩ C | − |B ∩ C |

+ |A ∩ B ∩ C |

|A | + |B | + |C |

The number indicates how 
often elements of the particular 

segments are counted using 
the expression blow/above.

Illustration source: Wikipedia.

https://en.wikipedia.org/wiki/Inclusion%E2%80%93exclusion_principle#/media/File:Inclusion-exclusion-3sets.png
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Siebformel

16

There are a few different ways we can write this formula, see here: Wikipedia.

https://en.wikipedia.org/wiki/Inclusion%E2%80%93exclusion_principle#Formula
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Combinatorics
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Example:  and , e.g. .k = 2 n = 3 S = {1,2,3}
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Combinatorics: Intuition

I highly suggest reading the “Kombinatorik kurz und knapp” slides from Prof. Dr. 
Erich Walter Farkas who teaches the “Wahrscheinlichkeit und Statistik” course 
this semester.


I will upload the relevant slides on my website.
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Example
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Example
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Conditional Probability 
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“A bedingt auf B” oder “A gegeben B”
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Conditional Probability 

1. , because if we know  already happened, then the probability of  
happening should be .





2. , since  doesn’t give us any information about .





3. If  already happened, then  can only happen if also  happened, so  
should be proportional to .

Pr[A |A] = 1 A A
1

Pr[A |A] =
Pr[A ∩ A]

Pr[A]
= Pr[A]/ Pr[A] = 1.

Pr[A |Ω] = Pr[A] Ω A

Pr[A |Ω] =
Pr[A ∩ Ω]

Pr[Ω]
= Pr[A]/1 = 1.

B A A ∩ B Pr[A |B]
Pr[A ∩ B]
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Conditional Probability
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Conditional Probability
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Illustration taken from “Wahrscheinlichkeit und Statistik” slides (Spring 2024), first chapter.

B

A1 A2

A3 A4

A1 ∪ A2 ∪ … ∪ An = Ω,  mit Ai ∩ Aj = ∅ für i ≠ j



Georg Hasebe

Interactive Example (Blackboard)
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Conditional Probability
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Independence
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Pr[A |B] =
Pr[A ∩ B]

Pr[B]
=

Pr[A] ⋅ Pr[B]
Pr[B]

= Pr[A]

“[…] das Vorwissen, dass B eintritt, keinen Einfluss auf die 
Wahrscheinlichkeit hat, mit der wir das Eintreten von A erwarten.”, skript p. 
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Interactive Example (Blackboard)
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Sind  und  unabhängig?A B
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Interactive Example (Blackboard)
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Sind  und  unabhängig?A C
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Independence
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Interactive Example (Blackboard)

31

what can we say about the independence of A,B,C?
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Interactive Example (Blackboard)

Consider the cycle graph . Two vertices are chosen randomly. What is the 
probability that they are neighbors?

Cn
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C8

Note that choosing vertex 1 and 2 is the same Ereignis as choosing vertex 2 and 1.
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Interactive Example (Blackboard)

Given  people, what is the probability that two of them share a birthday?


Assume every year has . An Ereignis is of the form  where 
. Assume that every  has the same probability.


n

365 ω = {t1, …, tn}
ti ∈ [365] ω
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