Algorithms and Probability

Week 4

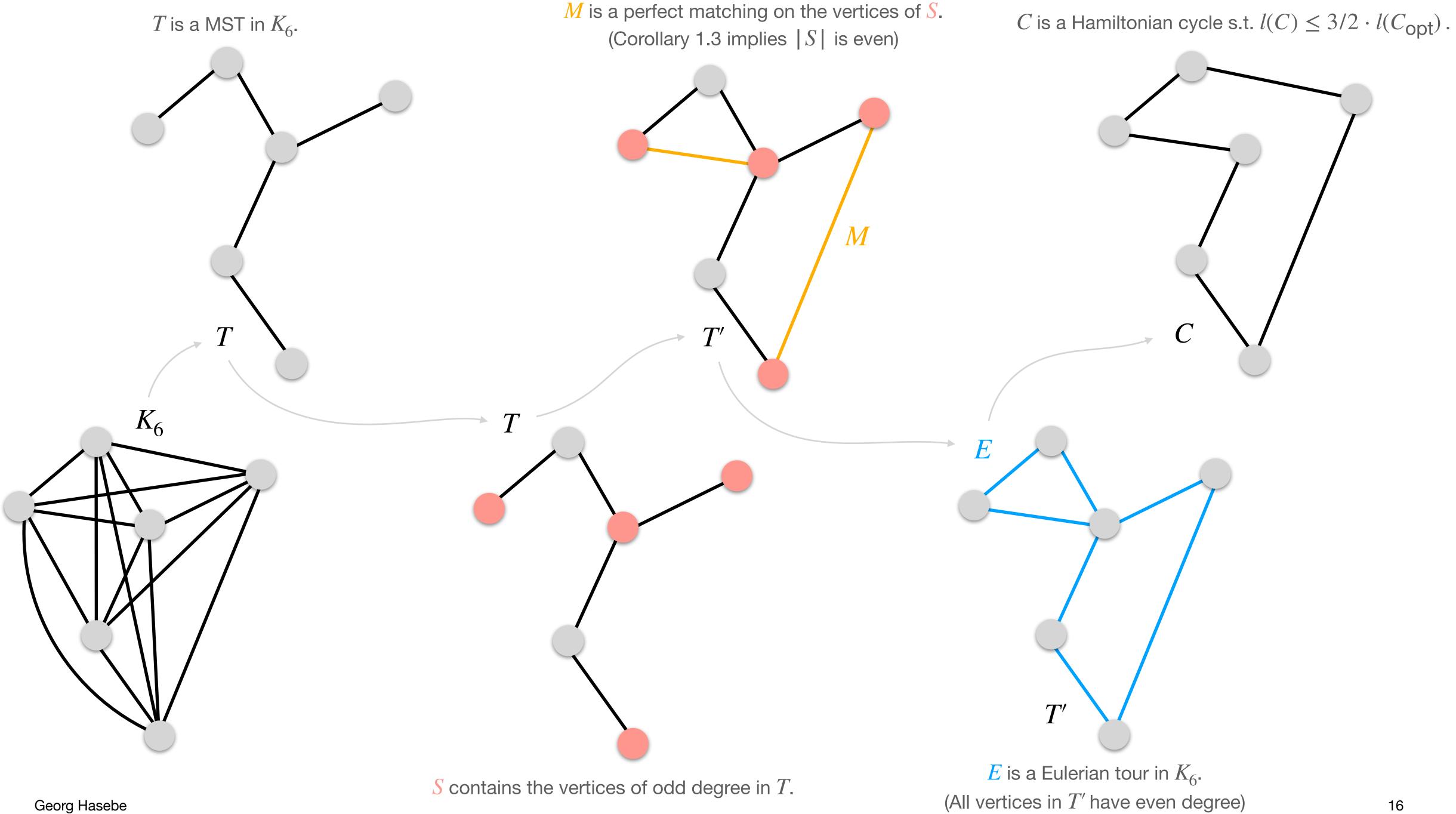
3/2-approximation-algorithm for metric TSP

Input: complete graph G, metric edge weight function l.

- 1. Determine MST T in G.
- 2. Determine perfect matching of minimum weight M on the vertices of odd degree in T. Add matching M to T, i.e. let $T' = T \cup M$ (possibly multigraph).
- 3. Find Eulerian circuit E in T'.

Step 2. is different from the 2-approximation.

4. Shorten E.



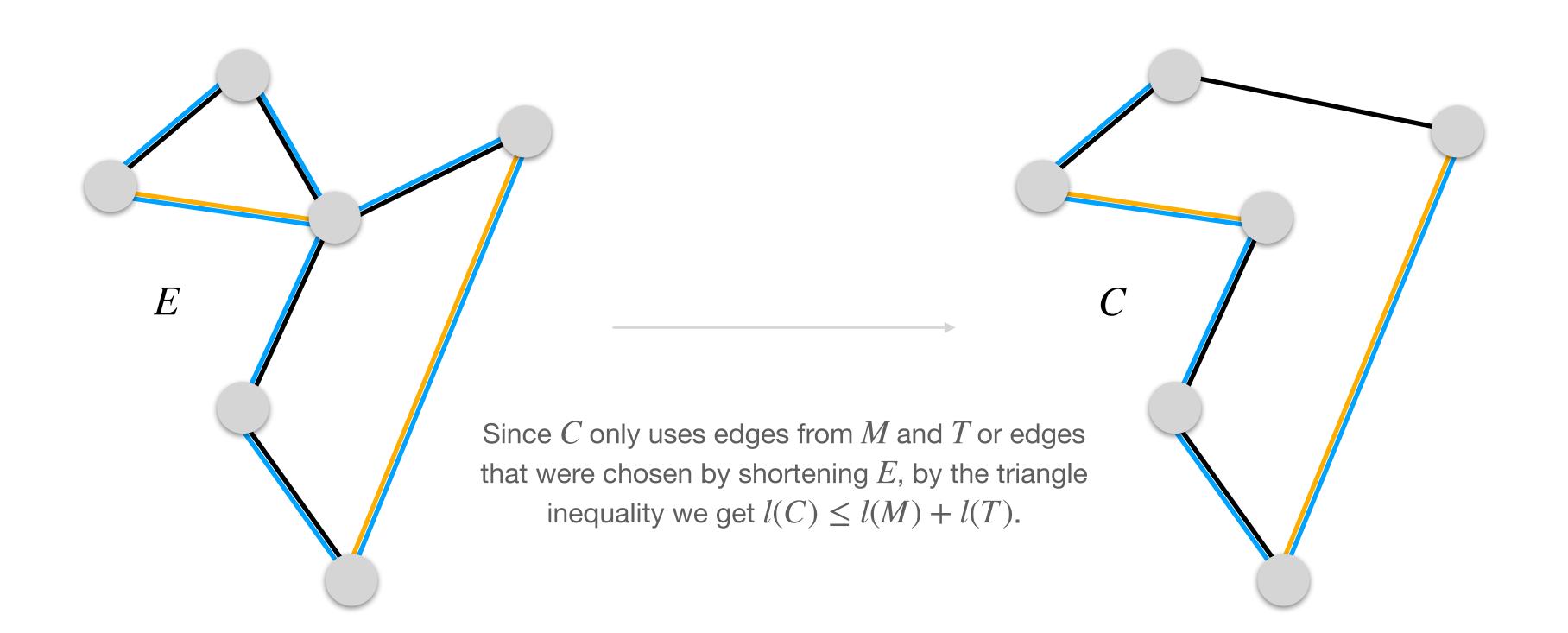
Notice that $l(C) \le l(M) + l(T)$. We know $l(T) \le l(C_{\mathsf{opt}})$.

If we show $l(M) \le 1/2 \cdot l(C_{\text{opt}})$ then $l(C) \le 3/2 \cdot l(C_{\text{opt}})$ as desired.

edges in matching M.

edges in MST T.

edges in Eulerian tour E.

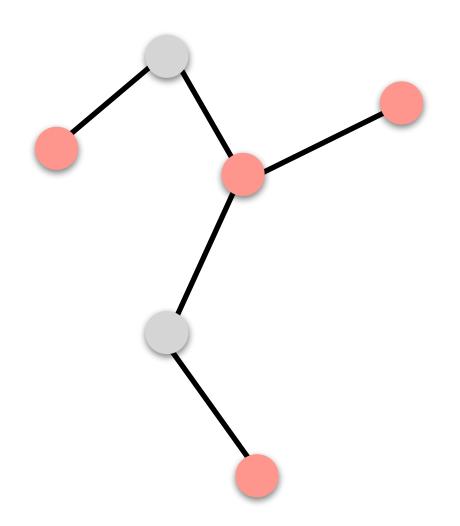


The vertices of odd degree (of T) in S partition $C_{\mbox{opt}}$ in |S| paths.

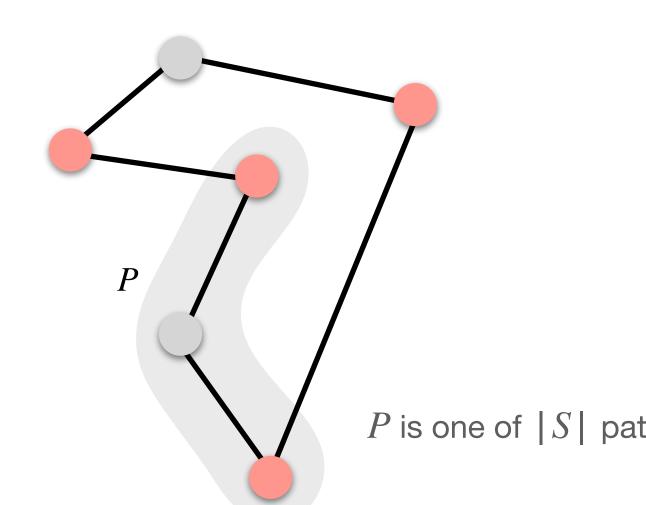
Shorten each path to one edge to get C_S with $l(C_S) \leq l(C_{opt})$ (triangle ineq.).

 $C_S = M_1 \cup M_2$ (each matching is of size |S|/2), one must have $\leq 1/2 \cdot l(C_S)$.

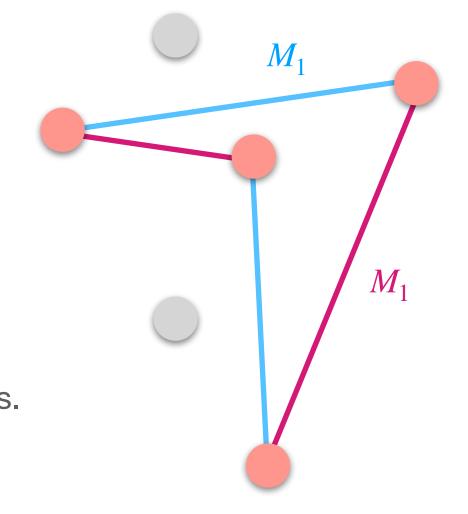
By definition of M this yields $l(M) \le 1/2 \cdot l(C_S) \le 1/2 \cdot l(C_{\mathsf{opt}})$.



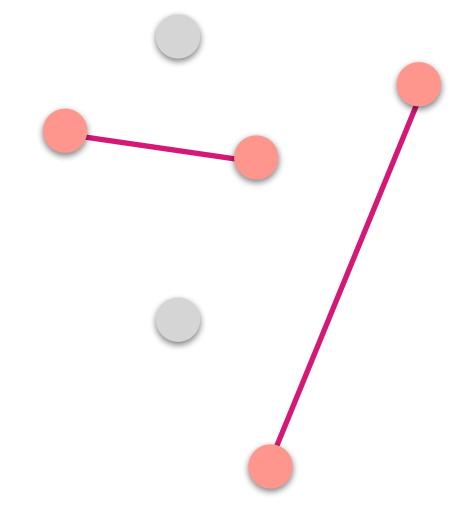
4 vertices have odd degree.



 C_{opt} contains every $v \in V$, therefore also the vertices in S.



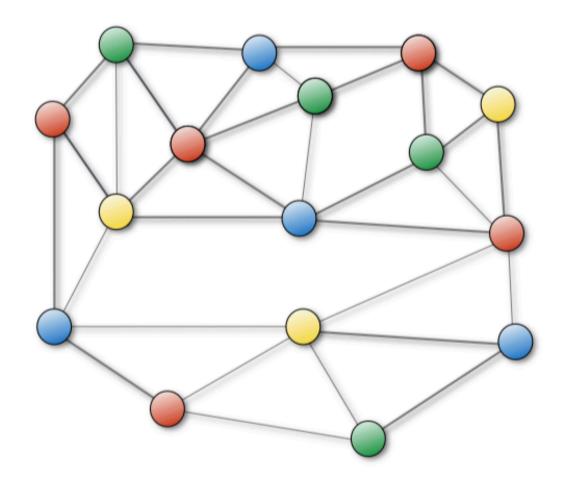
|S| shortened paths form $C_S = M_1 \cup M_2$.

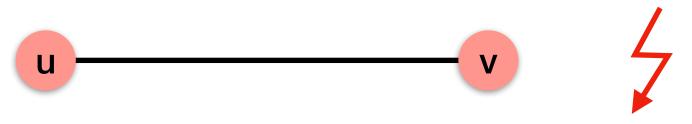


One matching must be the $\leq 1/2 \cdot l(C_S)$ since $l(M_1) + l(M_2) \leq l(C_S)$

Eine (Knoten-)Färbung eines Graphen G = (V, E) mit k Farben ist eine Abbildung $c : V \rightarrow [k]$, so dass gilt

 $c(u) \neq c(v)$ für alle Kanten $\{u, v\} \in E$.





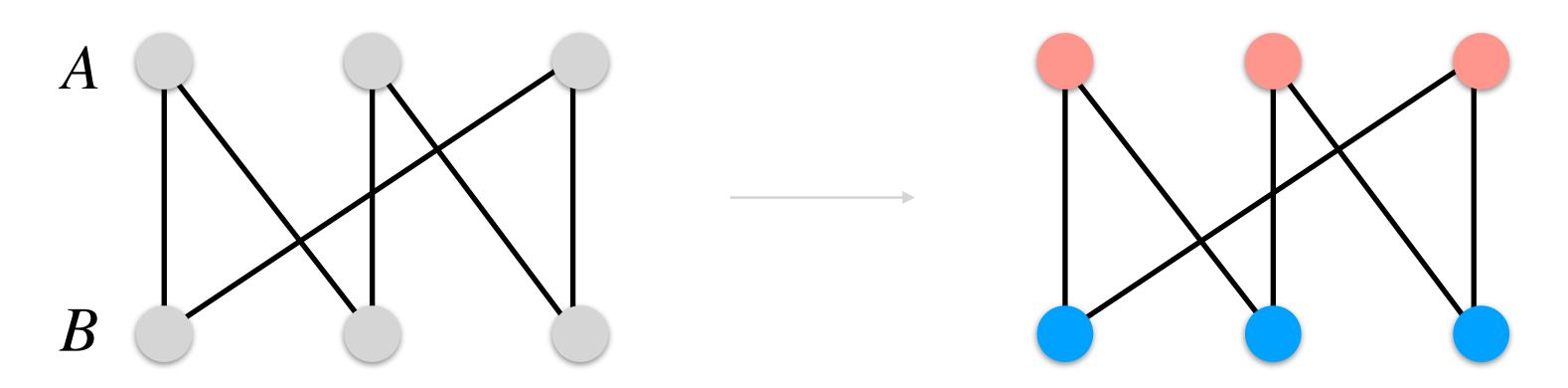
Two adjacent nodes cannot be colored in the same color.

Die **chromatische Zahl χ(G)** ist die minimale Anzahl Farben, die für eine Knotenfärbung von G benötigt wird.

Äquivalente Formulierung: $\chi(G) \le k$ gdw. G k-partit

Graphen mit chromatischer Zahl k nennt man auch k-partit (engl. k-partite). Die Motivation für diese Namensgebung sollte klar sein: Ein Graph G = (V, E) ist genau dann k-partit, wenn man seine Knotenmenge V so in K Mengen V_1, \ldots, V_k partitionieren kann, dass alle Kanten Knoten aus verschiedenen Mengen verbinden. Besonders wichtig ist der Fall K = 2.

Example: 2-partite (bipartite)



A vertex from A can't be connected to a vertex in B. A vertex of color c_1 can't be connected to a vertex of color c_2 .

Satz: Für jedes k ≥ 3 ist das Problem

"Gegeben ein Graph G = (V, E), gilt $\chi(G)$ ≤ k?"

NP-vollständig.

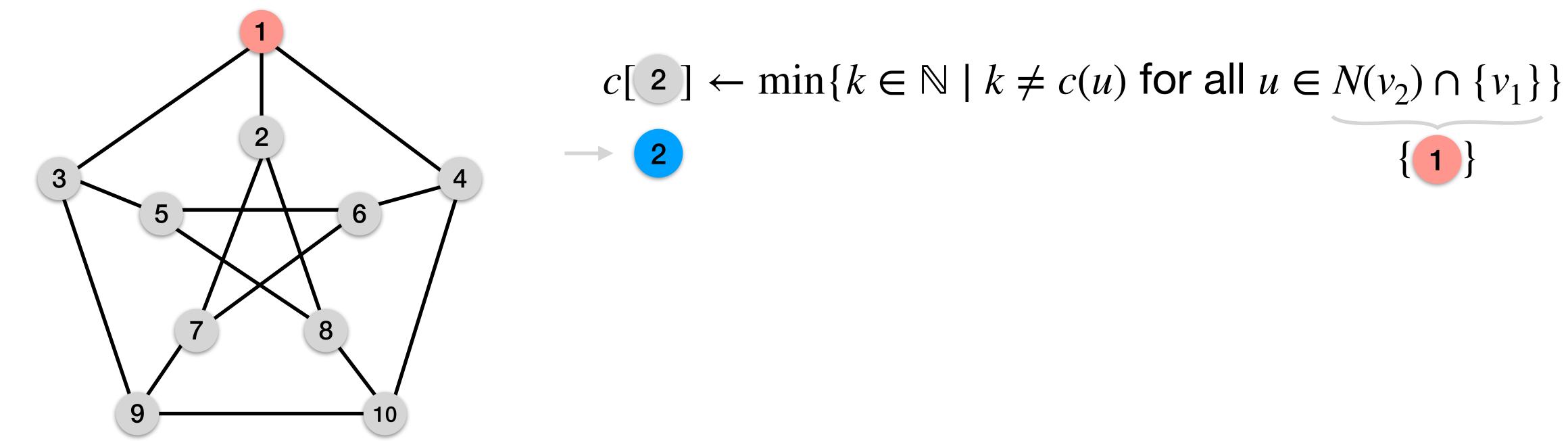
Greedy coloring

GREEDY-FÄRBUNG (G)

- 1: wähle eine beliebige Reihenfolge der Knoten: $V = \{v_1, \dots, v_n\}$
- 2: $c[v_1] \leftarrow 1$
- 3: for i = 2 to n do
- 4: $c[v_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c(u) \text{ für alle } u \in N(v_i) \cap \{v_1, \dots, v_{i-1}\}\}$

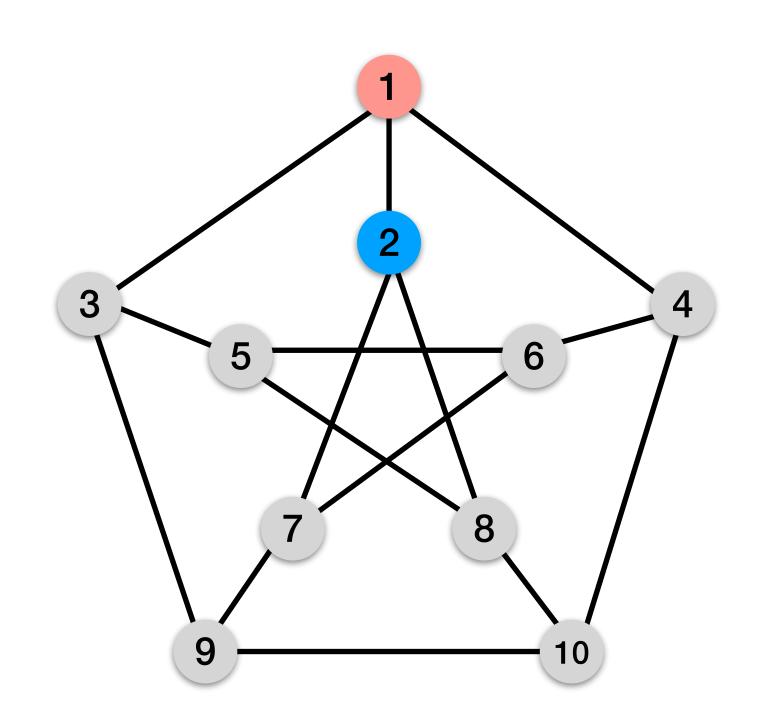
1: wähle eine beliebige Reihenfolge der Knoten: $V = \{\nu_1, \dots, \nu_n\}$ 3: for i=2 to n do

 $2: \ c[\nu_i] \leftarrow 1 \\ \qquad 4: \qquad c[\nu_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c(u) \text{ für alle } u \in N(\nu_i) \cap \{\nu_1, \ldots, \nu_{i-1}\}\}$



1: wähle eine beliebige Reihenfolge der Knoten: $V = \{\nu_1, \dots, \nu_n\}$ 3: for i=2 to n do

 $2: \ c[\nu_i] \leftarrow min\{k \in \mathbb{N} \mid k \neq c(u) \text{ für alle } u \in N(\nu_i) \cap \{\nu_1, \ldots, \nu_{i-1}\}\}$



 $c[2] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c(u) \text{ for all } u \in N(v_2) \cap \{v_1\}\}$

 $c[3] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c(u) \text{ for all } u \in N(v_3) \cap \{v_1\}\}$

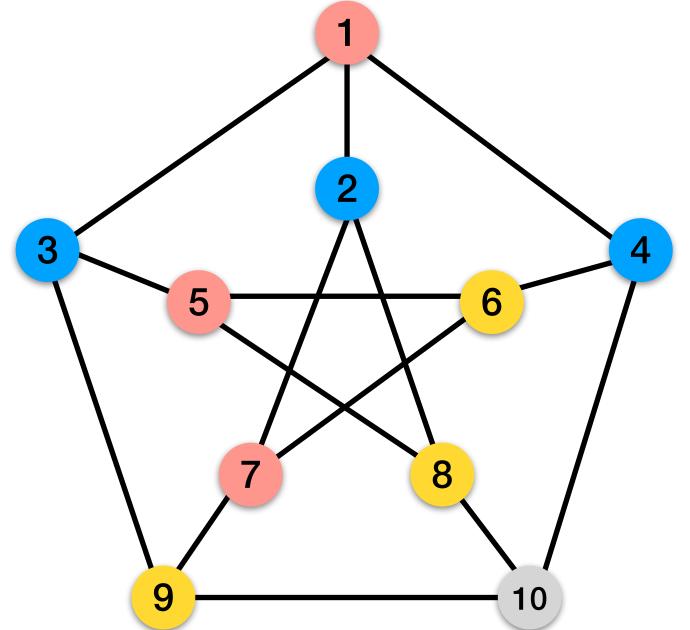
3

1: wähle eine beliebige Reihenfolge der Knoten: $V = \{v_1, \dots, v_n\}$ 3: for i = 2 to n do

2:
$$c[v_1] \leftarrow 1$$

$$c[v_i] \leftarrow 1$$

$$c[v_i] \leftarrow min\{k \in \mathbb{N} \mid k \neq c(u) \text{ für alle } u \in N(v_i) \cap \{v_1, \ldots, v_{i-1}\}\}$$



 $c[2] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c(u) \text{ for all } u \in N(v_2) \cap \{v_1\}\}$

 $c[3] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c(u) \text{ for all } u \in N(v_3) \cap \{v_1\}\}$

3

 $c[10] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c(u) \text{ for all } u \in N(v_{10}) \cap \{v_1, ..., v_9\}\}$

26

Result

Satz 1.60. Sei G ein zusammenhängender Graph. Für die Anzahl Farben C(G), die der Algorithmus Greedy-Färbung benötigt, um die Knoten des Graphen G zu färben, gilt

$$\chi(G) \leq C(G) \leq \Delta(G) + 1.$$

Ist der Graph als Adjazenzliste gespeichert, findet der Algorithmus die Färbung in Zeit O(|E|).

Where $\Delta(G) := \max_{v \in V} \deg(v)$ denotes the highest degree of any vertex in V.

Satz 1.60. Sei G ein zusammenhängender Graph. Für die Anzahl Farben C(G), die der Algorithmus Greedy-Färbung benötigt, um die Knoten des Graphen G zu färben, gilt

$$\chi(G) \leq C(G) \leq \Delta(G) + 1.$$

Ist der Graph als Adjazenzliste gespeichert, findet der Algorithmus die Färbung in Zeit O(|E|).

Worst case?

All neighbors of v already colored, then deg(v) + 1 colors needed. Hence at most $\Delta(G) + 1$ colors are needed.

Runtime: array $A[\deg(v) + 1] = [false, ..., false]$. Go over neighbors n_i of v and set $A[c(n_i)] = \text{true}$. Go over A and set color to index of **first false entry**.

Coloring v takes $O(\deg(v))$: the algorithm runs in $O(\sum_{v \in V} \deg(v)) = O(|E|)$.

Theorem 1.2.

Proof

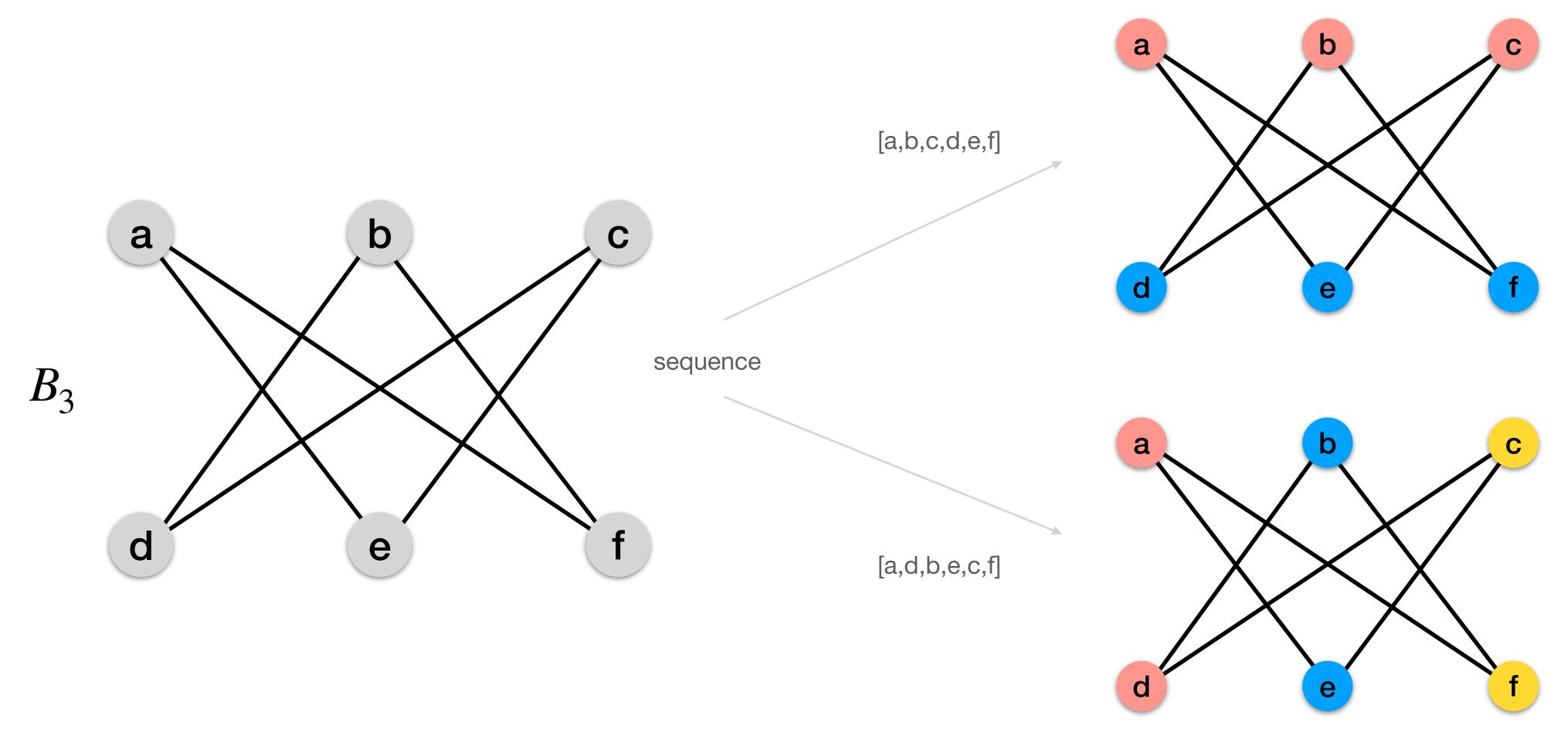
Remarks

 How many colors the greedy algorithm uses depends on the sequence of vertices.

• There always exists a sequence such that the algorithm needs $\chi(G)$ colors.

Beispiel 1.61. Betrachten wir den Graphen B_n mit 2n Knoten, der aus dem vollständigen bipartiten Graphen $K_{n,n}$ entsteht, indem man die Kanten zwischen gegenüberliegenden Knoten entfernt. Da der Graph B_n bipartit ist, könnte er eigentlich mit zwei Farben gefärbt werden; es ist aber nicht schwer einzusehen, dass es auch eine Reihenfolge der Knoten gibt, für die der Greedy-Algorithmus n Farben benötigt (Übung!).

Exercise



GREEDY-FÄRBUNG (G)

Coloring

 $c[\nu_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c(u) \text{ für alle } u \in N(\nu_i) \cap \{\nu_1, \ldots, \nu_{i-1}\}\}$

Beobachtung:

Gilt für die (gewählte) Reihenfolge $|N(v_i) \cap \{v_1, ..., v_{i-1}\}| \le k \quad \forall \ 2 \le i \le n$, dann benötigt der Greedy-Algorithmus höchstens k+1 viele Farben.

We want to minimize $|N(v_i) \cap \{v_1, ..., v_{i-1}\}| \forall 2 \le i \le n$.

The bigger i gets, the bigger $|\{v_1, ..., v_{i-1}\}|$ becomes.

Have v_i where $|N(v_i)|$ is small, at the end of the sequence.

Heuristik:

v_n := Knoten vom kleinsten Grad. Lösche v_n.

 v_{n-1} := Knoten vom kleinsten Grad im Restgraph. Lösche v_{n-1} . Iteriere.

Heuristik:

v_n := Knoten vom kleinsten Grad. Lösche v_n.

v_{n-1} := Knoten vom kleinsten Grad im Restgraph. Lösche v_{n-1}.

Iteriere.

Falls G=(V,E) erfüllt:

In jedem Subgraphen gibt es einen Knoten mit Grad ≤ k

→ Heuristik liefert Reihenfolge v₁,...,v_n für die der Greedy-Algorithmus höchstens k+1 Farben benötigt

Heuristik:

v_n := Knoten vom kleinsten Grad. Lösche v_n.

 $v_{n-1} := Knoten vom kleinsten Grad im Restgraph. Lösche <math>v_{n-1}$.

Iteriere.

Korollar:

G=(V,E) zshgd. und es gibt $v \in V$ mit $deg(v) < \Delta(G)$

→ Heuristik (oder Breiten-/Tiefensuche) liefert Reihenfolge, für die der Greedy-Algorithmus höchstens △(G) Farben benötigt

Heuristik:

 $v_n := Knoten vom kleinsten Grad. Lösche <math>v_n$.

 v_{n-1} := Knoten vom kleinsten Grad im Restgraph. Lösche v_{n-1} . Iteriere.

Korollar:

G=(V,E) zshgd. und es gibt $v \in V$ mit $deg(v) < \Delta(G)$

Proof

⇒ Heuristik (oder Breiten-/Tiefensuche) liefert Reihenfolge, für die der Greedy-Algorithmus höchstens △(G) Farben benötigt

Let
$$v \in V$$
 s.t. $\deg(v) < \Delta(G)$.

Start BFS/DFS in ν .

The sequence for the greedy algorithm is the **reverse order** of how we traversed the vertices in G (i.e. $v = v_n$).

Then every v_i , i < n has at least one uncolored neighbor v_j where j > i and thus at most $\Delta(G) - 1$ **colored** neighbors.

We started in v with $\deg(v) < \Delta(G)$, then $v_n = v$ and v_n has at most $\Delta(G) - 1$ colored neighbors. Greedy algorithm needs at most $\Delta(G)$ colors.

We just solved this.

Recommendation

Beispiel 1.62. Sei G = (V, E) ein zusammenhängender Graph mit Maximalgrad $\Delta(G)$. Weiter nehmen wir an, dass es einen Knoten $v \in V$ gibt mit $\deg(v) < \Delta(G)$. Wenn wir jetzt eine Breiten- oder Tiefensuche in v starten und die Knoten in umgekehrter Reihenfolge nummerieren, wie sie vom Algorithmus durchlaufen werden (der Knoten v ist also der Knoten v_n), so hat jeder Knoten v_i mit i < n mindestens einen Nachbarn v_j mit j > i und daher höchstens $\Delta(G) - 1$ gefärbte Nachbarn. Der Knoten v_n hat nach Wahl ebenfalls nur $\Delta(G) - 1$ gefärbte Nachbarn. Der Greedy-Algorithmus benötigt daher für diese Reihenfolge der Knoten höchstens $\Delta(G)$ Farben.

Beispiel 1.63. Sei G = (V, E) ein zusammenhängender k-regulärer Graph, in dem es mindestens einen Artikulationsknoten gibt. Wir wissen bereits aus Abschnitt 1.4.1, dass wir mit einer modifizierten Tiefensuche in Zeit O(|E|) einen solchen Artikulationsknoten ν bestimmen können. Seien V_1, \ldots, V_s die Knotenmengen der Zusammenhangskomponenten von $G - \nu$, wobei $s \geq 2$. Dann erfüllen alle Graphen $G_i := G[V_i \cup \{\nu\}], \ 1 \leq i \leq s$, die Annahme von Beispiel 1.62 – und können daher jeweils mit k Färben gefärbt werden. Durch eventuelles Vertauschen von Farben können wir zudem sicherstellen, dass in allen Graphen G_1, \ldots, G_s der Knoten ν die gleiche Farbe bekommen hat. Die Färbungen der Graphen G_i ergeben daher zusammen eine k-Färbung des Graphen G.

Skript p. 80

Satz 1.67. Jeden 3-färbbaren Graphen G=(V,E) kann man in Zeit O(|E|) mit $O(\sqrt{|V|})$ Farben färben.

Proof

Observation: for all $v \in V$, the induced subgraph G[N(v)] can be colored using two colors and is therefore bipartite. We can color G[N(v)] using BFS.

Idea: color vertices with *large degree* and their neighbors with 3 colors. If there is no vertex with *large degree* anymore, color the rest.

What is considered *large degree*? We will see: $\sqrt{\mid V \mid}$.

Satz 1.67. Jeden 3-färbbaren Graphen G = (V, E) kann man in Zeit O(|E|) mit $O(\sqrt{|V|})$ Farben färben.

Proof

While es gibt Knoten v, der $\geq \sqrt{|V|}$ ungefärbte Nachbarn hat:

Färbe v mit neuer Farbe und seine Nachbarn mit 2 weiteren neuen Farben.

Lösche alle gefärbten Knoten. Der Restgraph hat Maximalgrad $\Delta < \sqrt{|V|}$.

Each iteration we color **at least** $\sqrt{|V|}$ vertices, thus after **at most** $\sqrt{|V|}$ iterations we stop (since then $\sqrt{|V|} \cdot \sqrt{|V|} = |V|$ vertices are colored).

Each iteration takes 3 new colors: at most $3 \cdot \sqrt{|V|}$ colors.

Color the rest (after deletion) with Greedy: at most $\Delta + 1 \leq \sqrt{|V|}$ colors.

In total: $O(\sqrt{|V|})$ colors used.