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Traveling salesman problem (TSP)

Given a weighted, complete graph , we want to determine the Hamiltonian 
cycle of smallest total weight in .


More formally, if  is the edge weight function of , we look for a Hamiltonian 
cycle  such that


.

Kn
Kn

l Kn
C

∑
e∈C

l(e) = min{ ∑
e∈C′￼

∣ C′￼ is a Hamiltonian cycle in Kn}
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Metric TSP

Same as TSP, except the edge weight function  has to have the following 
property (triangle inequality)


.

l

l({x, z}) ≤ l({x, y}) + l({y, z}) for all x, y, z ∈ [n]
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x

y

z

l({x, y}) + l({y, z})

l({x, z})

traveling the direct route  is cheaper than .{x, z} {x, y} → {y, z}
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2-approximation-algorithm for metric TSP

Input: complete graph , metric edge weight function .


1. Determine MST  in .


2. Double all edges in , call it  (a multigraph).


3. Find Eulerian circuit  in .


4. Shorten  (we will see what this means).

G l

T G

T T′￼

E T′￼

E
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2-approximation-algorithm for metric TSP

Input: complete graph , metric edge weight function .G l
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G = K9
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2-approximation-algorithm for metric TSP

Input: complete graph , metric edge weight function .G l
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G = K9

T
1. Determine MST  in .T G



Georg Hasebe

2-approximation-algorithm for metric TSP

Input: complete graph , metric edge weight function .G l
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2. Double all edges in T

T T′￼

(*) Note that  is a multigraph.T′￼
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2-approximation-algorithm for metric TSP

Input: complete graph , metric edge weight function .G l
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3. Find Eulerian circuit  in .E T′￼

ET′￼

(*) possible since every degree is even by construction of .T′￼
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Input: complete graph , metric edge weight function .G l

2-approximation-algorithm for metric TSP
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E
4. Shorten E

We shorten  by walking along it and skipping vertices we already 
walked over. In this example we start at  and walk to the right.

E
v

v

H

(*) here we use the fact that the edge weight function fulfills the triangle inequality.

(**) remember that  is a complete graph, thus making it possible to walk over any edge we get by shortening.G
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Analysis
Let OPT be the cheapest Hamiltonian cycle. Then OPT  is a spanning tree.


cost(                         )  cost(OPT )  cost(OPT)


cost(                         )  cost(                         )  cost(OPT)


cost(                         )  cost(                         )  cost(OPT)


cost(                         )  cost(                         )  cost(OPT)

∖{e}

≤ ∖{e} ≤

= 2 ⋅ ≤ 2 ⋅

= ≤ 2 ⋅

≤ ≤ 2 ⋅
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 is a MSTT

T

construction of T′￼

T′￼ T

Eulerian circuit  goes 
over all edges in .

E
T′￼

E T′￼

 fulfills the triangle inequality, thus by shortening the cost can only get shorter.l

H E
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Runtime

1. Determine MST  in   


2. Double all edges in , call it  (a multigraph) 


3. Find Eulerian circuit  in 


4. Shorten  (we will see what this means) 

T G ⟹ O(n2)

T T′￼ ⟹ O(m)

E T′￼ ⟹ O(n)

E ⟹ O(n)
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See theorem 1.19. Remember that  is complete, thus .G m = O(n2)

Theorem 1.31. (b) we can find a Eulerian circuit in . Since  has  edges we have .O(m) T′￼ 2(n − 1) O(n)
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Result
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Matchings

17

Each vertex appears in at most one edge, i.e. e ∩ f = ∅ for all e, f ∈ M, e ≠ f
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Matchings
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english: maximal matching

english: maximum matching

english: maximal matching english: maximum matching
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DiskMath Recap

Exclusive or/Exclusive disjunction/Exor :⊕
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True whenever  and  differ.A B
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 for sets:⊕

DiskMath Recap
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A B A B

A ⊕ B = (A ∪ B)∖(A ∩ B)
= (A∖B) ∪ (B∖A)

 if in  or  but not both.x ∈ A ⊕ B A B
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Matchings
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Hint: What can we say about edges in ?Mmax ⊕ Minc

Proof on my website.

https://ghasebe.github.io/teaching/anp-ss25/#week-3
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This proof also holds for two inklusionsmaximale matchings. This means 
 also holds, since every kardinalitätsmaximale matching 

is also inklusionsmaximal.


Moreover, this shows that any inklusionsmaximale matching is a 2-
approximation of a kardinalitätsmaximale matching and also a 2-approximation 
of a minimum inklusionsmaximale matching.

|Mmax | ≥ |Minc | /2

(*) Remark
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(*) Not part of the lecture; source

https://en.wikipedia.org/wiki/Matching_(graph_theory)#Properties
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Greedy Matching

Input: Graph 


Initialize empty matching 


Repeat until  is empty:


1. Pick arbitrary edge 


2. Add  to matching 


3. Remove  and all incident edges from 

G = (V, E)

M

E

e in E

e M

e G
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v

w

y

x

M

G  empty; stopE

Note that the matching 
 consists only of 

edges, i.e. . The 
vertices were only 
drawn for better 

visualization.

M
M ⊆ E
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Pseudocode
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Result

 is a matching since after picking an edge  we delete all edges 
incident to  and . Thus for all  we have .


 is inklusionsmaximal by construction of the algorithm: it only stops after 
 is empty, meaning there cannot exist a matching  such that  

and .


Now we apply the theorem from before: we get .

MGreedy {v, w}
v w e, f ∈ MGreedy e ∩ f = ∅

MGreedy
E M′￼ MGreedy ⊆ M′￼

|M′￼| > MGreedy

|MGreedy | ≥
1
2

|Mmax |
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Augmenting Paths
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Augmentation means “Vergrösserung” in German, so augmenting paths are “Vergrösserungspfade”. 
I think I made this up, but maybe it helps remembering.
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Is there always an augmenting path?
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Proof

Let  be matchings in  such that . Then  
can’t be kardinalitätsmaximal. 


We inspect the graph . Each vertex in  has degree at 
most 2.

M1, M2 G = (V, E) |M1 | < |M2 | M1

GM = (V, M1 ⊕ M2) GM

29

This situation could never occur as  and  are matchings.M1 M2
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Proof

 matchings in , . (  not kardinalitätsmaximal)


. Each vertex in  has degree at most 2.


The connected components of  are paths or cycles.


All the cycles in  are of even length.

M1, M2 G = (V, E) |M1 | < |M2 | M1

GM = (V, M1 ⊕ M2) GM

GM

GM
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This situation could never occur as  and  are matchings.M1 M2

Follows from the degree being at most 2.
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Proof

 matchings in , . (  not kardinalitätsmaximal)


. Each vertex in  has degree at most 2.


The connected components of of  are paths or cycles.


All the cycles in  are of even length. All paths and cycles of even length 
contain the same amount of edges from  and .


Since , there exists a path  of odd length that contains more 
edges from .  is an augmenting path.

M1, M2 G = (V, E) |M1 | < |M2 | M1

GM = (V, M1 ⊕ M2) GM

GM

GM
M1 M2

|M1 | < |M2 | P
M2 P
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M2

M1

We can use this path to make  bigger.M1
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M2

M1

G = (V, E)
M′￼ = M2 ⊕ P

Using the augmenting path  we increased 
the size of .

P
M1

This edge was in both  and , meaning 
it can’t be in .

M1 M2
M1 ⊕ M2

GM = (V, M1 ⊕ M2)

P
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Idea

Using the concept of an augmenting path, we can increase the number of 
edges in a matching until it is kardinalitätsmaximal.
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Hopcroft-Karp algorithm

This algorithm relies on the concept of an augmenting path.


By repeatedly finding augmenting paths we can increase the number of edges 
in our matching until it is kardinalitätsmaximal.


But how do we find augmenting paths? 
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BFS for finding augmenting paths

Input: bipartite graph , matching 


We use BFS to go from  to  and back, while alternating between edges in  
and .


G = (A ⊎ B, E) M

A B M
E∖M
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Pseudocode
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Pseudocode
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d

a

f

c

e

bA

B f

a

d

c

e

b

a cL0
d feL1

a d

Is augmenting path , return .P P
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f

a

d

c

e

bA

B f

a

d

c

e

b

f

a

d

c

e

bcL0
d eL1
a bL2

fL3
c d a f

Is augmenting path , return .P P

f

a

d

c

e

b
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f

a

d

c

e

bA

B

L0 = ∅
No augmenting paths left. By theorem 
1.48 this means that  is a maximum 

matching.
M
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Result
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