Satz: Ist Minc ein inklusionsmaximales Matching und Mmax ein kardinalitätsmaximales Matching, so gilt

 $|M_{inc}| \ge |M_{max}| / 2$.

Proof

We consider edges from the exclusive disjunction of $M_{
m max}$ and $M_{
m inc}$, i.e. $e \in M_{\text{max}} \oplus M_{\text{inc}} = (M_{\text{max}} \setminus M_{\text{inc}}) \cup (M_{\text{inc}} \setminus M_{\text{max}}).$

(i) Each edge in $(M_{\text{inc}} \setminus M_{\text{max}})$ can be adjacent to at most two edges in $(M_{\text{max}}\backslash M_{\text{inc}}).$

Clearly, any other edge in $(M_{\max} \backslash M_{\mathrm{inc}})$ adjacent to e would contradict the fact that M_{\max} is a matching.

(ii) Each edge in $(M_{\text{max}}\backslash M_{\text{inc}})$ is adjacent to an edge in $(M_{\text{inc}}\backslash M_{\text{max}})$.

If e was not adjacent to an edge in $(M_{\text{inc}} \setminus M_{\text{max}})$, then we could add e to M_{inc} . Contradiction.

