Algorithms and Probability

Week 3

Satz von Hall

Satz 1.52 (Satz von Hall, Heiratssatz). Für einen bipartiten Graphen $G = (A \uplus B, E)$ gibt es genau dann ein Matching M der Kardinalität |M| = |A|, wenn gilt

$$|N(X)| \ge |X|$$
 für alle $X \subseteq A$. (1.1)

Note the notation N(X) is defined as: $N(X) := \bigcup_{v \in X} N(v)$.

Georg Hasebe

Proof

 (\Longrightarrow) Assume $G=(A\uplus B,E)$ has a matching M of size |M|=|A|.

In the subgraph $H = (A \uplus B, M)$, every subset $X \subseteq A$ has exactly |X| neighbors (i.e. |N(X)| = |X|) by definition of a matching.

Since $M \subseteq E$ we have that $|N(X)| \ge |X|$ for all $X \subseteq A$.

Georg Hasebe

Satz 1.52 (Satz von Hall, Heiratssatz). Für einen bipartiten Graphen $G = (A \uplus B, E)$ gibt es genau dann ein Matching M der Kardinalität |M| = |A|, wenn gilt $|N(X)| \ge |X|$ für alle $X \subseteq A$. (1.1)

Proof

(C) on the blackboard.

Georg Hasebe

P(A) is the powerset of A.

Proof

For all $X \in P(A)$ we assume that |N(X)| > |X|. You can verify this yourself for the example.

A_1 B_1 B_2

$$G = (A \uplus B, E)$$

 A_3

 B_3

$$|X_0| = |\{A_1, A_2\}| = |\{B_1, B_2\}| = |N(X_0)|$$

$$G' = G[X_0 \uplus N(X_0)]$$

For G' condition (1.1) holds.

$$A_3$$
 B_3

$$G'' = G[A \setminus X_0 \uplus B \setminus N(X_0)]$$

What about G''?

Proof

We can find a perfect matchings M' and M'' in G' and G'' (since condition (1.1) holds).

Then $M = M' \cup M''$ is a perfect matching in G.

