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DFS for finding bridges/cut vertices

• Given an undirected graph , find the bridges and cut vertices.


• Naive: remove edges/vertices and check for connectedness.


• As we will see, there is a more efficient approach using DFS.

G = (V, E)
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DFS recap
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DFS recap
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DFS recap
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DFS for finding bridges/cut vertices

• We extend traditional DFS by maintaining the following information 
throughout iteration:


•  … the time DFS “entered” vertex  (dfs , where  is the root of 
the DFS tree).


• low  … the lowest entry time dfs  we can reach from  through a 
directed path consisting of an arbitrary number of tree edges and at most 
one restkante.

dfs[v] v [r] = 1 r

[v] [w] v
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Proof

Let  such that  is not the root of the DFS tree. 


We show that  is a cut vertex if and only if  has a neighbor  in the DFS tree 
such that .

v ∈ V v

v v u T
low[u] ≥ dfs[v]
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Proof

Assume that  is a cut vertex. Then  has at least  connected 
components  and . Without loss of generality, assume .


Every path from  to a vertex in  must include , we have 
.


Since  is a connected component in , there cannot be an edge 
from  to a vertex .

v G[V∖{v}] 2
Z1 Z2 s ∈ Z1

s Z2 v
1 = dfs[s] < dfs[v] < dfs[w] ∀w ∈ Z2

G[Z2] G[V∖{v}]
w ∈ Z2 u ∈ V∖({v} ∪ Z2)
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Proof

…


Since  is a connected component in , there cannot be an edge 
from  to a vertex .

G[Z2] G[V∖{v}]
w ∈ Z2 u ∈ V∖({v} ∪ Z2)
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( ⇒ )

vZ1
Z2 ⟹

remove v

Z2

G[Z2]

G[V∖{v}]

G

if there was such an edge, then  would be connected to  and therefore element 
of  but  doesn’t contain vertices from .

u Z2
Z2 V∖({v} ∪ Z2) Z2

s

there could possibly be more than  connected components after removing  
hence  is only part of the bigger shaded region which contains all vertices 
that are not in  or  itself.
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Proof

…


Since  is a connected component in , there cannot be an edge 
from  to a vertex in .


Thus  is at least  for all . Since  is connected to , it has 
at least one neighbor  such that .

G[Z2] G[V∖{v}]
w ∈ Z2 u ∈ V∖({v} ∪ Z2)

low[w] dfs[v] w ∈ Z2 v Z2
w ∈ Z2 low[w] ≥ dfs[v]
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DiskMath Recap

Contraposition:


 is equivalent to 


Here:


 is a cut vertex   has a neighbor  such that 





 is not a cut vertex   has no neighbor  such that 


P → Q ¬Q → ¬P

v ⇐ v u low[u] ≥ dfs[v]

⇔

v ⇒ v u low[u] ≥ dfs[v]
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Proof

Assume  is not a cut vertex.


Let  be the DFS tree rooted at  and let  be all the neighbors of  in 
. Without loss of generality, assume .


v

T s w0, …, wl v
G dfs[w0] < dfs[v]
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( ⇐ )
using contraposition
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Proof

44

 since we reach  earlier from  than .dfs[w0] < dfs[v] w0 s v

by construction of the DFS algorithm, the subtrees rooted at  cannot be connected.w1, …, wl

but they have to be connected in , otherwise  would be a cut vertex.G v
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…


For every neighbor  there exists a path using a restkante to a vertex 
with smaller dfs-number.


w1, …, wl

Proof

45

( ⇐ )
using contraposition

< dfs[v]
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…


For every neighbor  there exists a path using a restkante to a vertex 
with smaller dfs-number.


Thus  is greater than  for all neighbors  of , meaning that there is 
no neighbor  of  such that .

w1, …, wl

low[w] dfs[v] w v
w v low[v] ≥ dfs[u]

Proof
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( ⇐ )
using contraposition
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What about the root?

Let  be the DFS tree rooted at . If  then  is a cut vertex.


Proof. Assume . By construction of the DFS algorithm, the 
subtrees rooted at  cannot be connected. Even if there was a 
restkante from a subtree to , after removing  the vertices contained in the 
subtrees become disconnected in .


Thus  is a cut vertex.

T s deg(s) ≥ 2 s

deg(s) = l ≥ 2
w1, …, wl

s s
G[V∖{s}]

s
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s
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Identify the cut vertices
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Identify the cut vertices
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since it is the root and 

in the DFS tree.

deg(A) ≥ 2

since E is a neighbor of D and 
low[E] = 10 ≥ dfs[D] = 10.

since F is a neighbor of B and 
low[F] = 3 ≥ dfs[D] = 3.
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Pseudocode
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Kapitel 1 — Graphentheorie, p. 39
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Result (cut vertices)
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Note that DFS normally runs in  but since we assume  is connected, we know that  thus 
.

O( |V | + |E | ) G |E | ≥ |V | − 1
|V | + |E | ≤ 2 ⋅ |E | ≤ O( |E | )
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What about bridges?

• First, notice that if  (connected) contains a bridge , any spanning tree 
of  must contain .


• Hence the DFS tree must contain , as it is a spanning tree of .


• We reuse our Lemma from earlier:

G e ∈ E
G e

e G
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Lemma: Let  be a connected graph. If  is a bridge, then 
 and  are cut vertices unless they have degree .

G = (V, E) {u, v} ∈ E
u v 1
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What about bridges?

Let  be an edge in the DFS tree , then  is a bridge if and only if 
.


e = (v, w) T e
low[w] > dfs[v]

54

Lemma: Let  be a connected graph. If  is a bridge, then 
 and  are cut vertices unless they have degree .

G = (V, E) {u, v} ∈ E
u v 1
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On finding Hamiltonian cycles 

• Finding Hamiltonian cycles is hard (NP-hard)


• The only known algorithms are exponential


• Naive: try out all possibilities for a Hamiltonian cycle. How many?


• At most . Why?(n − 1)!/2
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DP Algorithm

, .


Let  where . Consider the following notation for all 





Now if there exists some  where ,  contains a Hamiltonian 
cycle.


We can calculate the values for  using dynamic programming.

G = (V, E) V = [n] = {1,2,…, n}

S ⊆ V 1 ∈ S x ∈ S, x ≠ 1

PS,x = {1, there exists a 1-x path in G that contains all vertices in S
0, otherwise.

x ∈ N(1) P[n],x = 1 G

PS,x
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DP Algorithm

, .


Base cases: If  for some , then  if .


Recursion:  

G = (V, E) V = [n] = {1,2,…, n}

S = {1,x} x ∈ V PS,x = 1 {1,x} ∈ E

PS,x = max{PS∖{x},x′￼
∣ x′￼ ∈ S ∩ N(x), x′￼ ≠ 1}

67

1 x′￼ x

PS∖{x},x′￼ = 1

x′￼∈ S ∩ N(x)

1 x′￼ x

PS,x = 1

S
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Pseudocode
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The initialization part covers all subsets of 
size 2. We therefore start with subsets of 

size 3 and work our way up to .n

We go through all subsets of size . If 
, then the only subset will be  itself. 

Remember, we try to determine .

s
s = n [n]

P[n],x

 ensures that any path that we 
extend by  does not contain .

S∖{x}
x x

We demand that , because we started 
with 1 already.

x ≠ 1

Here we attempt to “close” a 
Hamiltonian  path in order to get a 

Hamiltonian cycle.
1-x
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Result
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Proof










n

∑
s=3

∑
S⊆[n],1∈S,|S|=s

∑
x∈S,x≠1

O(???)

=
n

∑
s=3

∑
S⊆[n],1∈S,|S|=s

∑
x∈S,x≠1

O(n)

=
n

∑
s=3

(n − 1
s − 1)(s − 1)O(n)

≤ O(n2 ⋅ 2n)
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(*) where we used .
n−1

∑
s=0

(n − 1
s ) = 2n−1

, but we exclude .|S | = s 1

A subset of  of size  from 
 vertices; then 

.

S′￼ s − 1
n − 1

S = S′￼∪ {1}


