
2025/02/27 — Georg Hasebe

Algorithms and Probability
Week 2

Georg Hasebe

DFS for finding bridges/cut vertices

• Given an undirected graph , find the bridges and cut vertices.

• Naive: remove edges/vertices and check for connectedness.

• As we will see, there is a more efficient approach using DFS.

G = (V, E)

31

Georg Hasebe

DFS recap

32

C

B

G

D H

F

A

start DFS here

K

I

L

J

E

Georg Hasebe

DFS recap

33

C

B

G

D H

F

A
K

I

L

J

E

tree edge

restkanten

Georg Hasebe

DFS recap

34

C

B

G

D

H

F

A

KI

L

J

E

tree edge

restkanten

Georg Hasebe

DFS for finding bridges/cut vertices

• We extend traditional DFS by maintaining the following information
throughout iteration:

• … the time DFS “entered” vertex (dfs , where is the root of
the DFS tree).

• low … the lowest entry time dfs we can reach from through a
directed path consisting of an arbitrary number of tree edges and at most
one restkante.

dfs[v] v [r] = 1 r

[v] [w] v

35

Georg Hasebe 36

tree edge

restkanten

(dfs , low)[v] [v]

v

C

B

G

D

H

F

A

KI

L

J

E

(1, low[A])

(10, low[D])

(11, low[E])

(12, low[J])

(2, low[C])

(3, low[B])

(4, low[F])

(5, low[G])

(6, low[H])

(7, low[I]) (8, low[K])

(9, low[L])

Georg Hasebe 37

tree edge

restkanten

(dfs , low)[v] [v]

v

C

B

G

D

H

F

A

KI

L

J

E

(10, 10)

(11, 10)

(12, 10)

(2, 1)

(3, 1)

(4, 3)

(5, 3)

(6, 3)

(7, 3) (8, 3)

(9, 1)

(1, 1)

D

AC B L

at most one restkante

(1,1)(2, 1)

smallest dfs-number

J
(12, 10) (10, 10)

smallest dfs-number

Georg Hasebe

Proof

Let such that is not the root of the DFS tree.

We show that is a cut vertex if and only if has a neighbor in the DFS tree
such that .

v ∈ V v

v v u T
low[u] ≥ dfs[v]

38

Georg Hasebe

Proof

Assume that is a cut vertex. Then has at least connected
components and . Without loss of generality, assume .

Every path from to a vertex in must include , we have
.

Since is a connected component in , there cannot be an edge
from to a vertex .

v G[V∖{v}] 2
Z1 Z2 s ∈ Z1

s Z2 v
1 = dfs[s] < dfs[v] < dfs[w] ∀w ∈ Z2

G[Z2] G[V∖{v}]
w ∈ Z2 u ∈ V∖({v} ∪ Z2)

39

(⇒)

Georg Hasebe

Proof

…

Since is a connected component in , there cannot be an edge
from to a vertex .

G[Z2] G[V∖{v}]
w ∈ Z2 u ∈ V∖({v} ∪ Z2)

40

(⇒)

vZ1
Z2 ⟹

remove v

Z2

G[Z2]

G[V∖{v}]

G

if there was such an edge, then would be connected to and therefore element
of but doesn’t contain vertices from .

u Z2
Z2 V∖({v} ∪ Z2) Z2

s

there could possibly be more than connected components after removing
hence is only part of the bigger shaded region which contains all vertices
that are not in or itself.

2 v
Z1

Z2 v

Z1s

V∖({v} ∪ Z2)

w
w

Georg Hasebe

Proof

…

Since is a connected component in , there cannot be an edge
from to a vertex in .

Thus is at least for all . Since is connected to , it has
at least one neighbor such that .

G[Z2] G[V∖{v}]
w ∈ Z2 u ∈ V∖({v} ∪ Z2)

low[w] dfs[v] w ∈ Z2 v Z2
w ∈ Z2 low[w] ≥ dfs[v]

41

(⇒)

Georg Hasebe

DiskMath Recap

Contraposition:

 is equivalent to

Here:

 is a cut vertex has a neighbor such that

 is not a cut vertex has no neighbor such that

P → Q ¬Q → ¬P

v ⇐ v u low[u] ≥ dfs[v]

⇔

v ⇒ v u low[u] ≥ dfs[v]

42

Georg Hasebe

Proof

Assume is not a cut vertex.

Let be the DFS tree rooted at and let be all the neighbors of in
. Without loss of generality, assume .

v

T s w0, …, wl v
G dfs[w0] < dfs[v]

43

(⇐)
using contraposition

Georg Hasebe

Proof

44

 since we reach earlier from than .dfs[w0] < dfs[v] w0 s v

by construction of the DFS algorithm, the subtrees rooted at cannot be connected.w1, …, wl

but they have to be connected in , otherwise would be a cut vertex.G v

Georg Hasebe

…

For every neighbor there exists a path using a restkante to a vertex
with smaller dfs-number.

w1, …, wl

Proof

45

(⇐)
using contraposition

< dfs[v]

Georg Hasebe

…

For every neighbor there exists a path using a restkante to a vertex
with smaller dfs-number.

Thus is greater than for all neighbors of , meaning that there is
no neighbor of such that .

w1, …, wl

low[w] dfs[v] w v
w v low[v] ≥ dfs[u]

Proof

46

(⇐)
using contraposition

Georg Hasebe

What about the root?

Let be the DFS tree rooted at . If then is a cut vertex.

Proof. Assume . By construction of the DFS algorithm, the
subtrees rooted at cannot be connected. Even if there was a
restkante from a subtree to , after removing the vertices contained in the
subtrees become disconnected in .

Thus is a cut vertex.

T s deg(s) ≥ 2 s

deg(s) = l ≥ 2
w1, …, wl

s s
G[V∖{s}]

s

47

s

w0 w1 wl
…

Georg Hasebe

Identify the cut vertices

48

tree edge

restkanten

(dfs , low)[v] [v]

v

C

B

G

D

H

F

A

KI

L

J

E

(1)

(10, 10)

(11, 10)

(12, 10)

(2, 1)

(3, 1)

(4, 3)

(5, 3)

(6, 3)

(7, 3) (8, 3)

(9, 1)

Georg Hasebe

Identify the cut vertices

49

C

B

G

D

H

F

A

KI

L

J

E

(1)

(10, 10)

(11, 10)

(12, 10)

(2, 1)

(3, 1)

(4, 3)

(5, 3)

(6, 3)

(7, 3) (8, 3)

(9, 1)

tree edge

restkanten

(dfs , low)[v] [v]

v

cut vertex:

A

D

B

since it is the root and

in the DFS tree.

deg(A) ≥ 2

since E is a neighbor of D and
low[E] = 10 ≥ dfs[D] = 10.

since F is a neighbor of B and
low[F] = 3 ≥ dfs[D] = 3.

Georg Hasebe 50

C

B

G

D H

F

A
K

I

L

J

E

C

B

G

D H

F

K

I

L

J

E

C

G

D H

F

A

K

I

L

J

E

C

B

G

H

F

A

K

I

L

J

E

remove A

remove B

remove D

Georg Hasebe

Pseudocode

51

Kapitel 1 — Graphentheorie, p. 39

Georg Hasebe

Result (cut vertices)

52

Note that DFS normally runs in but since we assume is connected, we know that thus
.

O(|V | + |E |) G |E | ≥ |V | − 1
|V | + |E | ≤ 2 ⋅ |E | ≤ O(|E |)

Georg Hasebe

What about bridges?

• First, notice that if (connected) contains a bridge , any spanning tree
of must contain .

• Hence the DFS tree must contain , as it is a spanning tree of .

• We reuse our Lemma from earlier:

G e ∈ E
G e

e G

53

Lemma: Let be a connected graph. If is a bridge, then
 and are cut vertices unless they have degree .

G = (V, E) {u, v} ∈ E
u v 1

Georg Hasebe

What about bridges?

Let be an edge in the DFS tree , then is a bridge if and only if
.

e = (v, w) T e
low[w] > dfs[v]

54

Lemma: Let be a connected graph. If is a bridge, then
 and are cut vertices unless they have degree .

G = (V, E) {u, v} ∈ E
u v 1

Georg Hasebe

On finding Hamiltonian cycles

• Finding Hamiltonian cycles is hard (NP-hard)

• The only known algorithms are exponential

• Naive: try out all possibilities for a Hamiltonian cycle. How many?

• At most . Why?(n − 1)!/2

64

Georg Hasebe

DP Algorithm

, .

Let where . Consider the following notation for all

Now if there exists some where , contains a Hamiltonian
cycle.

We can calculate the values for using dynamic programming.

G = (V, E) V = [n] = {1,2,…, n}

S ⊆ V 1 ∈ S x ∈ S, x ≠ 1

PS,x = {1, there exists a 1-x path in G that contains all vertices in S
0, otherwise.

x ∈ N(1) P[n],x = 1 G

PS,x

66

Georg Hasebe

DP Algorithm

, .

Base cases: If for some , then if .

Recursion:

G = (V, E) V = [n] = {1,2,…, n}

S = {1,x} x ∈ V PS,x = 1 {1,x} ∈ E

PS,x = max{PS∖{x},x′￼
∣ x′￼ ∈ S ∩ N(x), x′￼ ≠ 1}

67

1 x′￼ x

PS∖{x},x′￼ = 1

x′￼∈ S ∩ N(x)

1 x′￼ x

PS,x = 1

S

Georg Hasebe

Pseudocode

68

The initialization part covers all subsets of
size 2. We therefore start with subsets of

size 3 and work our way up to .n

We go through all subsets of size . If
, then the only subset will be itself.

Remember, we try to determine .

s
s = n [n]

P[n],x

 ensures that any path that we
extend by does not contain .

S∖{x}
x x

We demand that , because we started
with 1 already.

x ≠ 1

Here we attempt to “close” a
Hamiltonian path in order to get a

Hamiltonian cycle.
1-x

Georg Hasebe

Result

69

Georg Hasebe

Proof

n

∑
s=3

∑
S⊆[n],1∈S,|S|=s

∑
x∈S,x≠1

O(???)

=
n

∑
s=3

∑
S⊆[n],1∈S,|S|=s

∑
x∈S,x≠1

O(n)

=
n

∑
s=3

(n − 1
s − 1)(s − 1)O(n)

≤ O(n2 ⋅ 2n)

70

(*) where we used .
n−1

∑
s=0

(n − 1
s) = 2n−1

, but we exclude .|S | = s 1

A subset of of size from
 vertices; then

.

S′￼ s − 1
n − 1

S = S′￼∪ {1}

