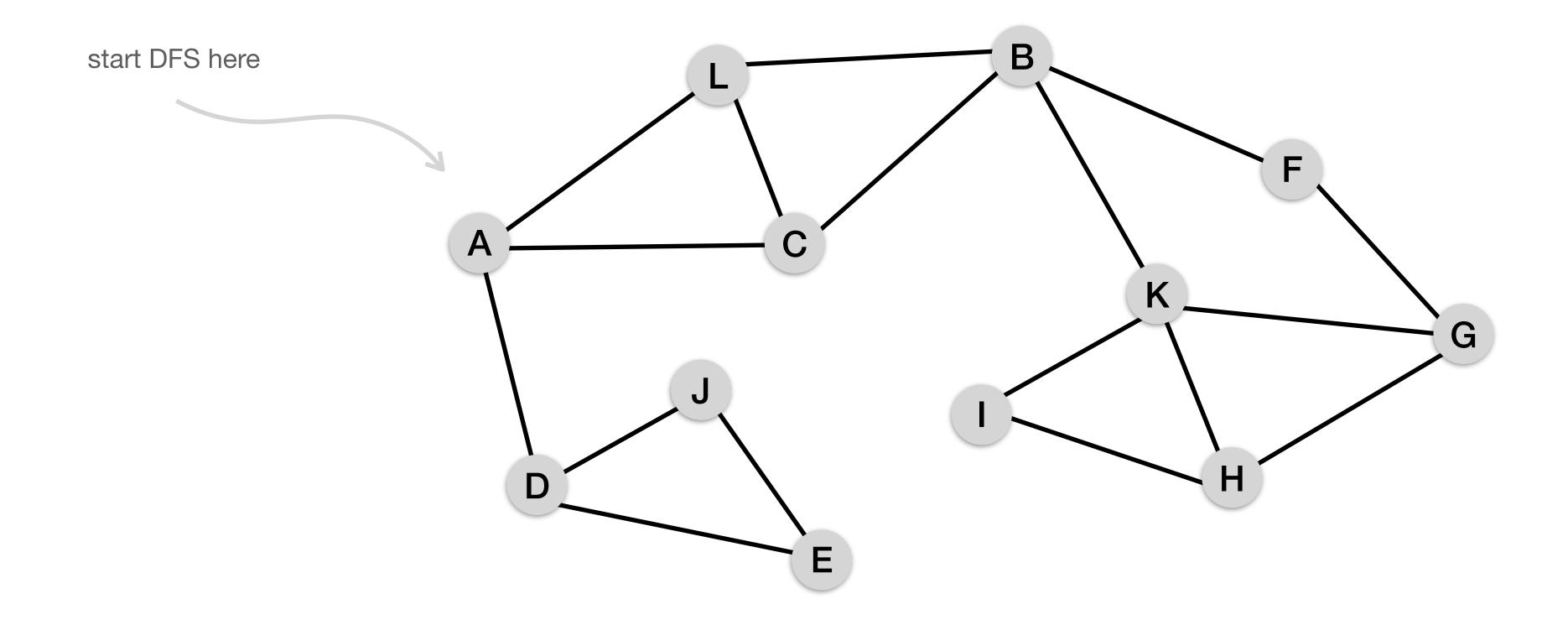
Algorithms and Probability

Week 2

DFS for finding bridges/cut vertices

- Given an undirected graph G = (V, E), find the bridges and cut vertices.
- Naive: remove edges/vertices and check for connectedness.
- As we will see, there is a more efficient approach using DFS.

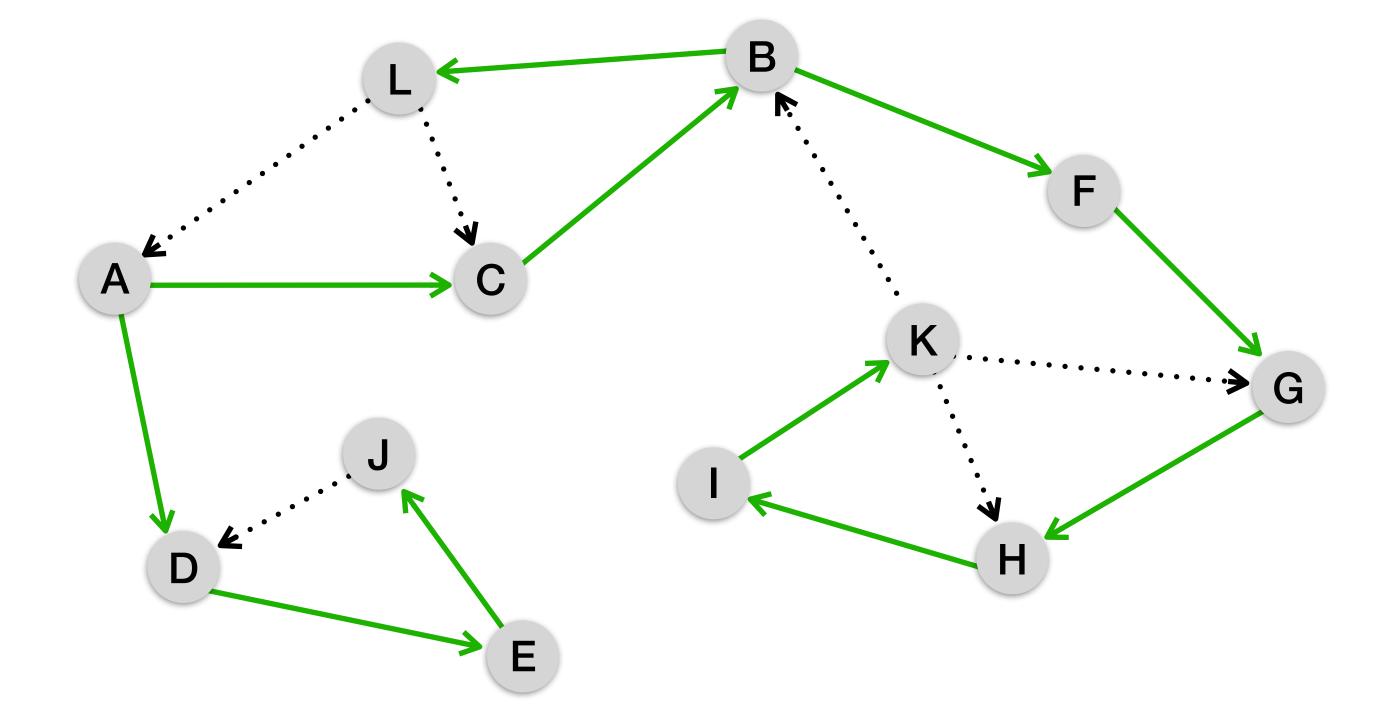
DFS recap



DFS recap

tree edge

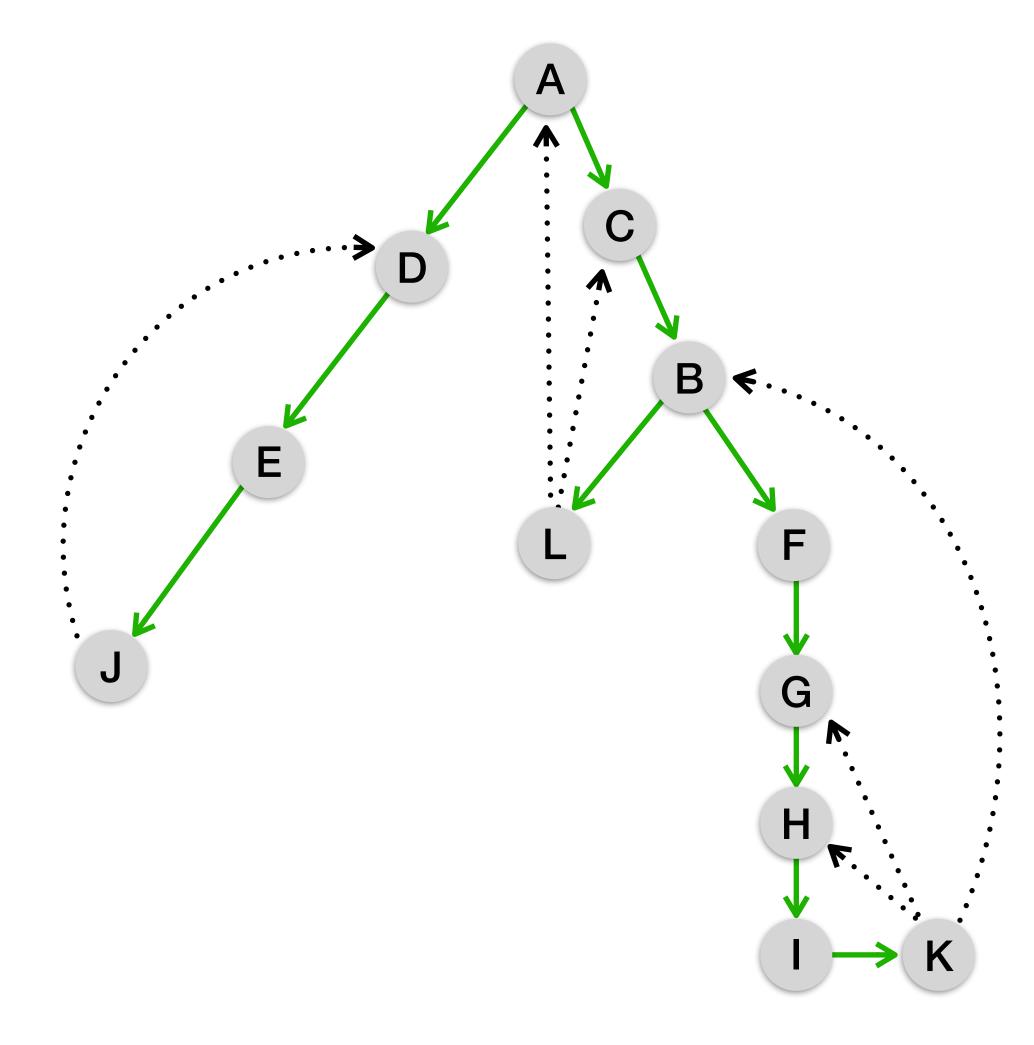
···· restkanten



DFS recap

tree edge

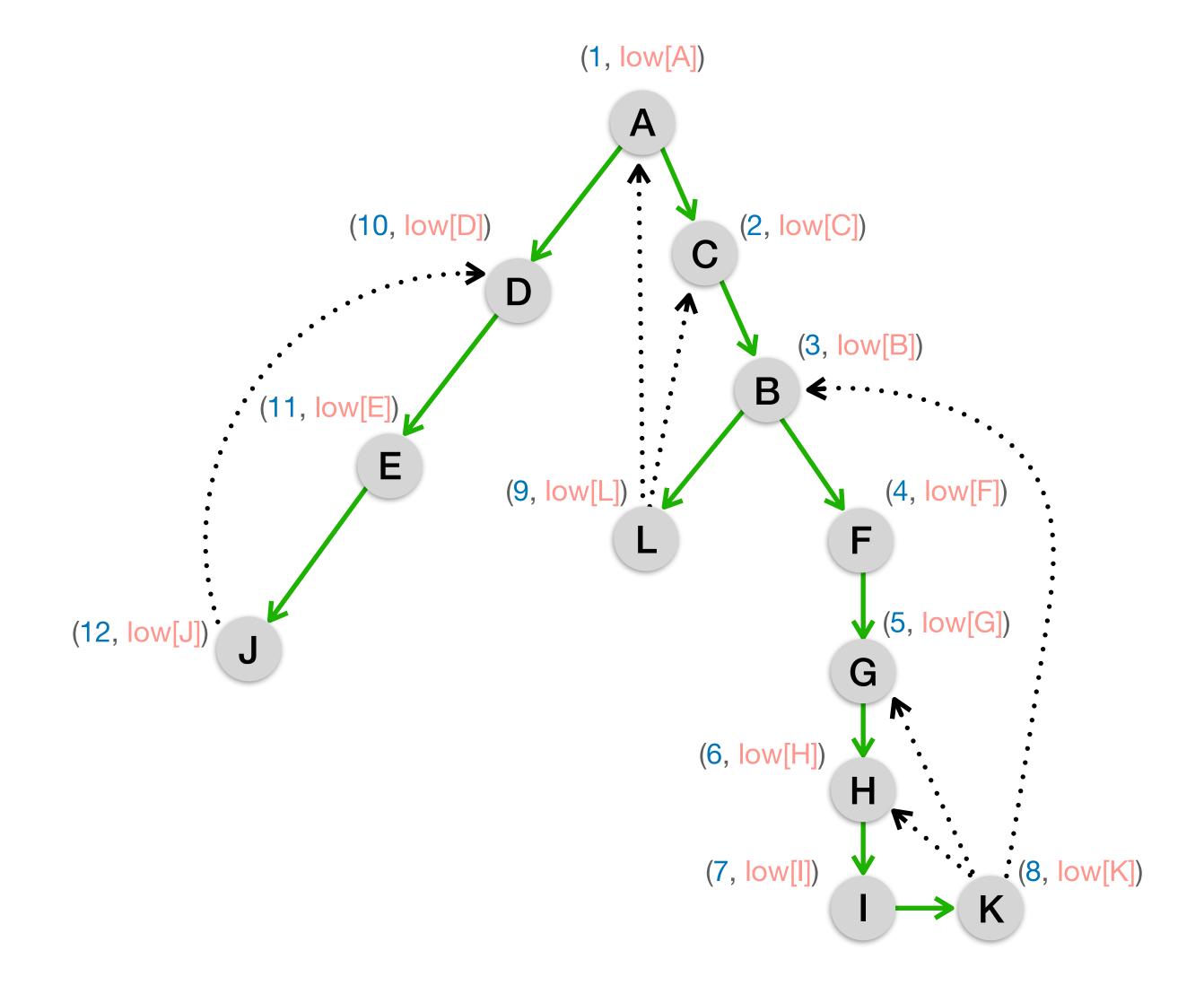
····· restkanten

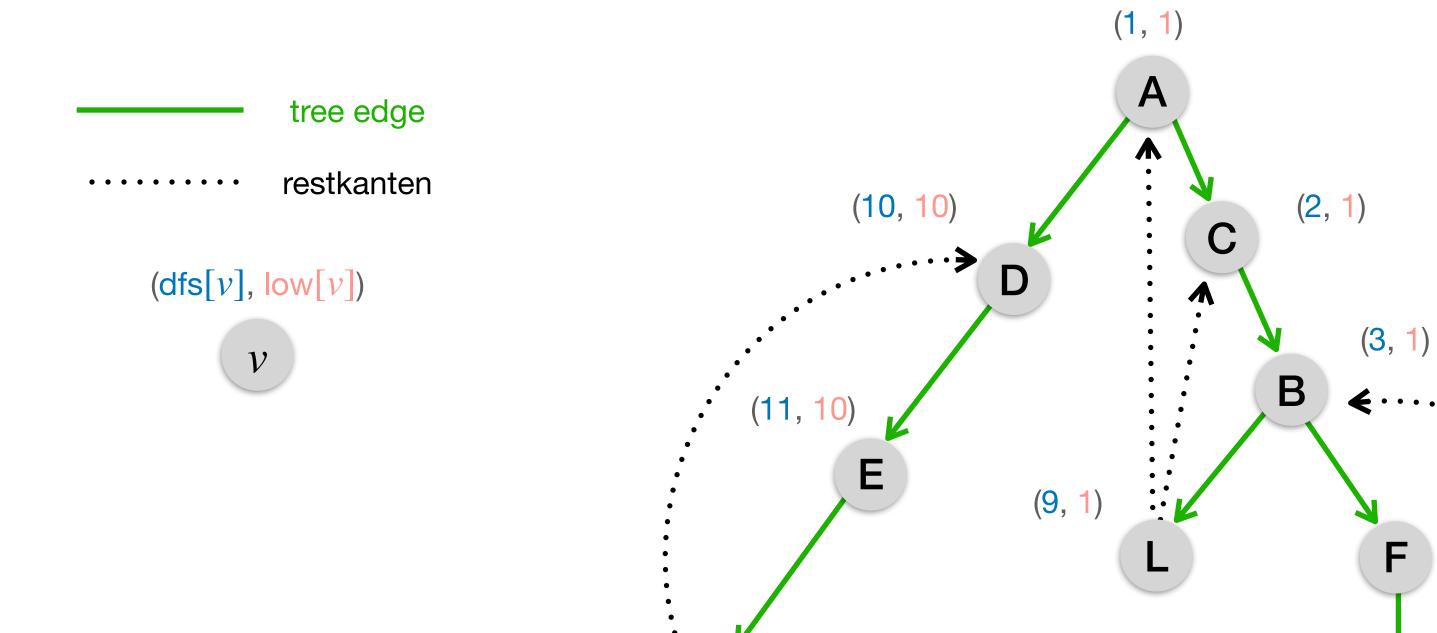


DFS for finding bridges/cut vertices

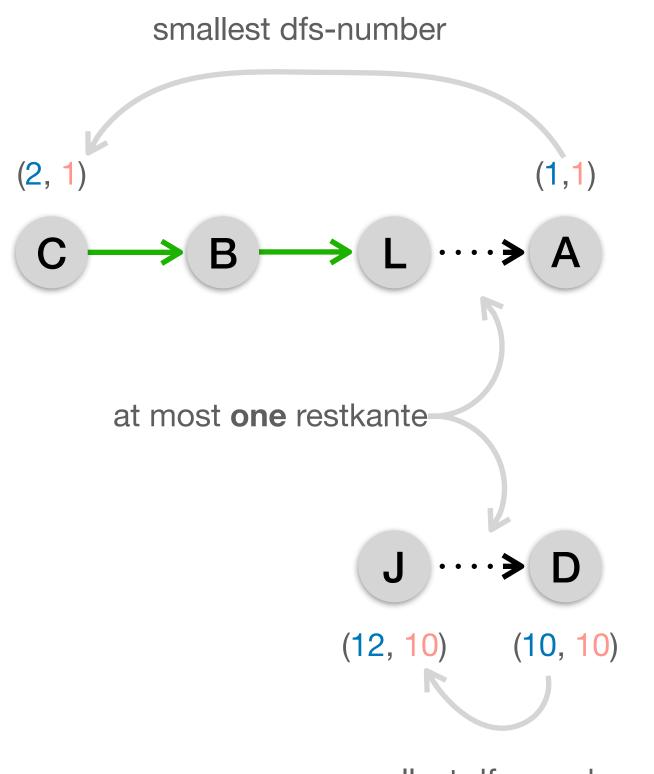
- We extend traditional DFS by maintaining the following information throughout iteration:
 - dfs[v] ... the time DFS "entered" vertex v (dfs[r] = 1, where r is the root of the DFS tree).
 - low[v] ... the lowest entry time dfs[w] we can reach from v through a directed path consisting of an arbitrary number of tree edges and at most one restkante.

tree edge restkanten $(\mathsf{dfs}[v], \mathsf{low}[v])$





(12, 10)



smallest dfs-number

Georg Hasebe

(4, 3)

(5, 3)

· (8, 3)

G

Н

(6, 3)

(7, 3)

Proof

Let $v \in V$ such that v is **not the root** of the DFS tree.

We show that v is a cut vertex if and only if v has a neighbor u in the DFS tree T such that $low[u] \ge dfs[v]$.

 (\Rightarrow)

Proof

Assume that v is a cut vertex. Then $G[V \setminus \{v\}]$ has at least 2 connected components Z_1 and Z_2 . Without loss of generality, assume $s \in Z_1$.

Every path from s to a vertex in Z_2 must include v, we have $1 = \mathrm{dfs}[s] < \mathrm{dfs}[v] < \mathrm{dfs}[w] \quad \forall w \in Z_2$.

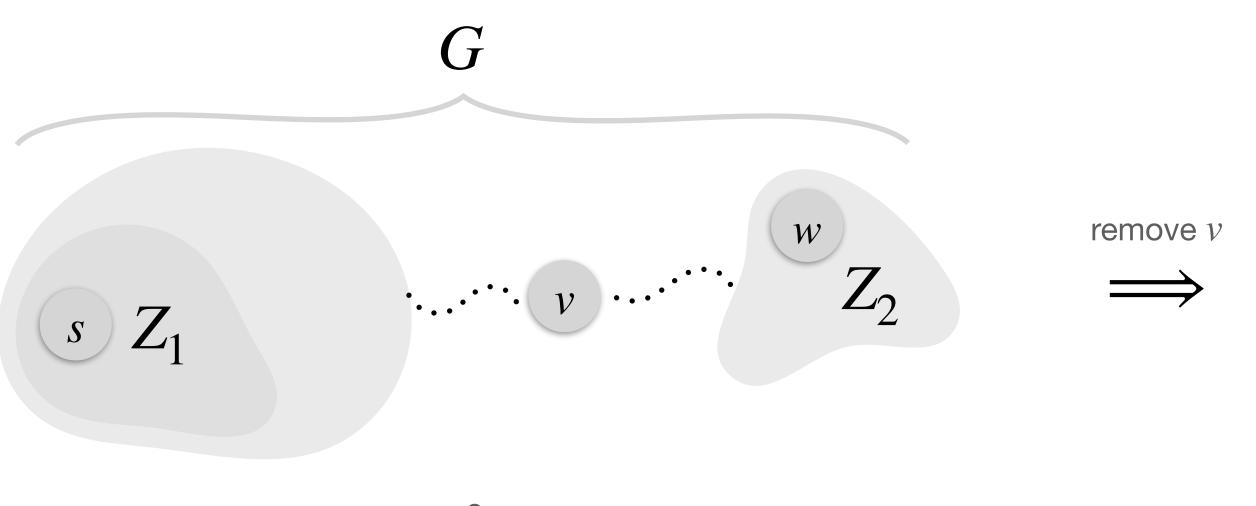
Since $G[Z_2]$ is a connected component in $G[V \setminus \{v\}]$, there cannot be an edge from $w \in Z_2$ to a vertex $u \in V \setminus (\{v\} \cup Z_2)$.

 (\Rightarrow)

Proof

. . .

Since $G[Z_2]$ is a connected component in $G[V \setminus \{v\}]$, there cannot be an edge from $w \in Z_2$ to a vertex $u \in V \setminus (\{v\} \cup Z_2)$.



there could possibly be more than 2 connected components after removing v hence Z_1 is only part of the bigger shaded region which contains all vertices that are not in Z_2 or v itself.

 $G[V \setminus \{v\}]$ $S Z_1 \qquad \qquad Z_2$ $V \setminus (\{v\} \cup Z_2)$

if there was such an edge, then u would be connected to Z_2 and therefore element of Z_2 but $V\setminus (\{v\}\cup Z_2)$ doesn't contain vertices from Z_2 .

 (\Rightarrow)

Proof

. . .

Since $G[Z_2]$ is a connected component in $G[V \setminus \{v\}]$, there cannot be an edge from $w \in Z_2$ to a vertex in $u \in V \setminus (\{v\} \cup Z_2)$.

Thus low[w] is at least dfs[v] for all $w \in Z_2$. Since v is connected to Z_2 , it has at least one neighbor $w \in Z_2$ such that $low[w] \ge dfs[v]$.

DiskMath Recap

Contraposition:

 $P \rightarrow Q$ is equivalent to $\neg Q \rightarrow \neg P$

Here:

v is a cut vertex $\Leftarrow v$ has a neighbor u such that $low[u] \ge dfs[v]$

 \Leftrightarrow

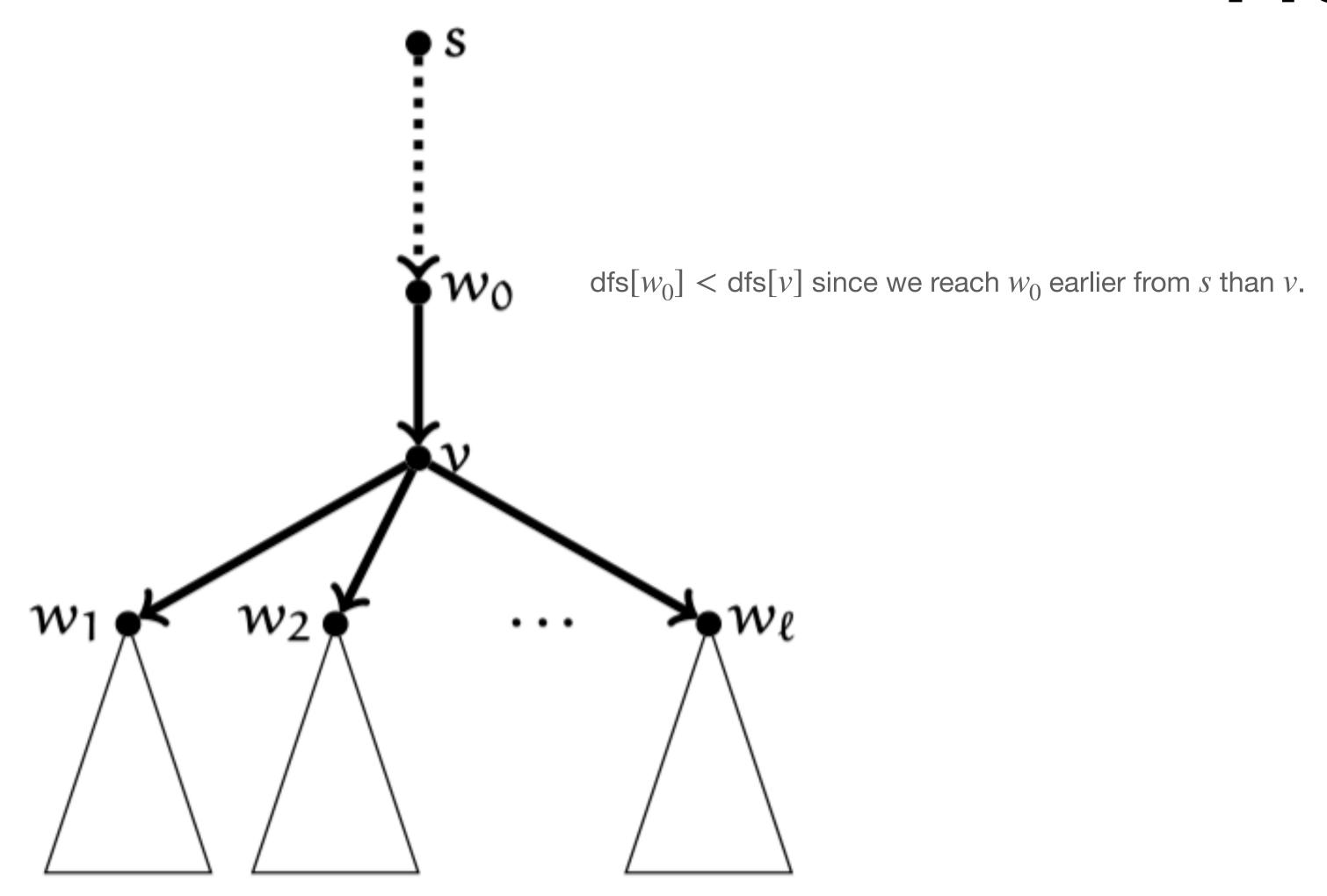
v is **not** a cut vertex $\Rightarrow v$ **has no** neighbor u such that $low[u] \ge dfs[v]$

Proof

Assume v is not a cut vertex.

Let T be the DFS tree rooted at s and let $w_0, ..., w_l$ be all the neighbors of v in G. Without loss of generality, assume $dfs[w_0] < dfs[v]$.

Proof



by construction of the DFS algorithm, the subtrees rooted at $w_1, ..., w_l$ cannot be connected.

but they have to be connected in G, otherwise v would be a cut vertex.

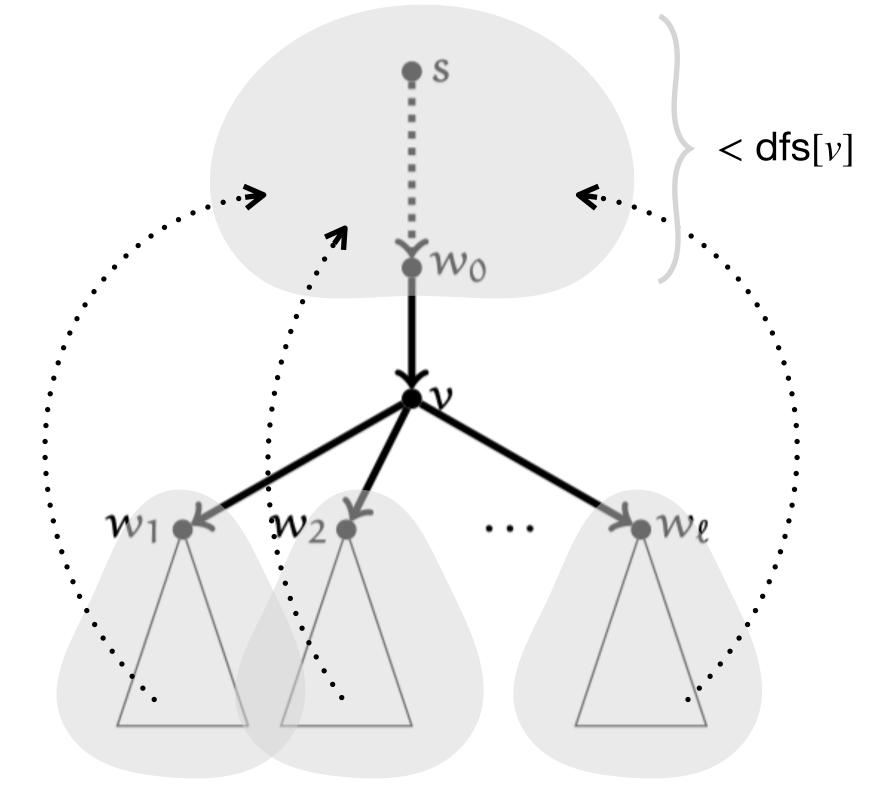
 (\Leftarrow)

Proof

. . .

For every neighbor w_1, \ldots, w_l there exists a path using a restkante to a vertex

with smaller dfs-number.



Proof

. . .

For every neighbor $w_1, ..., w_l$ there exists a path using a restkante to a vertex with smaller dfs-number.

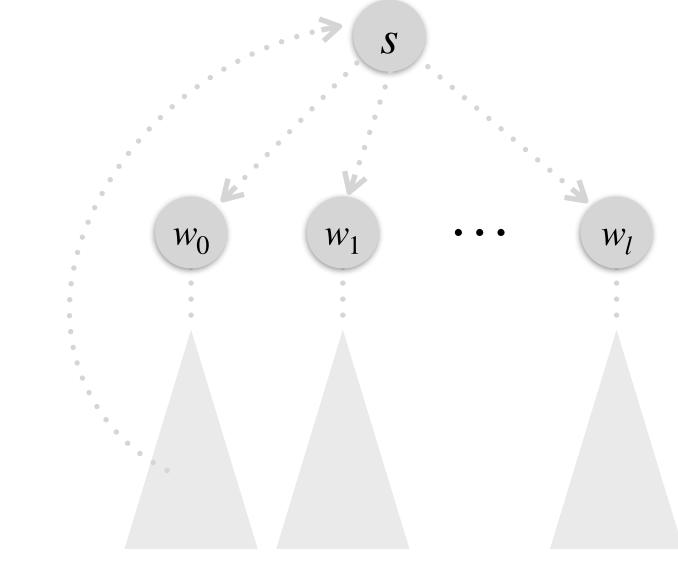
Thus low[w] is greater than dfs[v] for all neighbors w of v, meaning that there is no neighbor w of v such that $low[v] \ge dfs[u]$.

What about the root?

Let T be the DFS tree rooted at s. If $deg(s) \ge 2$ then s is a cut vertex.

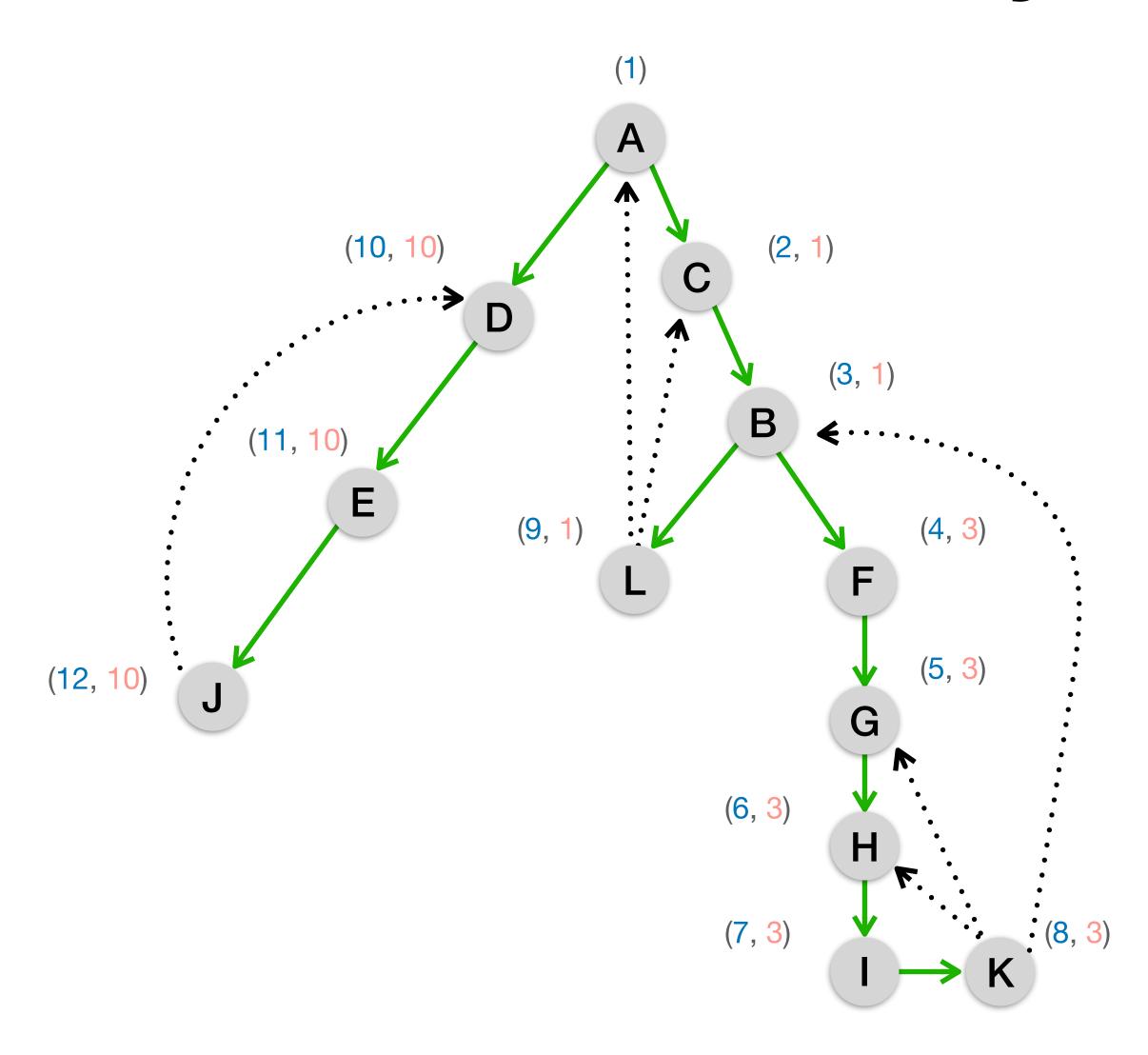
Proof. Assume $\deg(s) = l \ge 2$. By construction of the DFS algorithm, the subtrees rooted at w_1, \ldots, w_l cannot be connected. Even if there was a restkante from a subtree to s, after removing s the vertices contained in the subtrees become disconnected in $G[V \setminus \{s\}]$.

Thus s is a cut vertex.

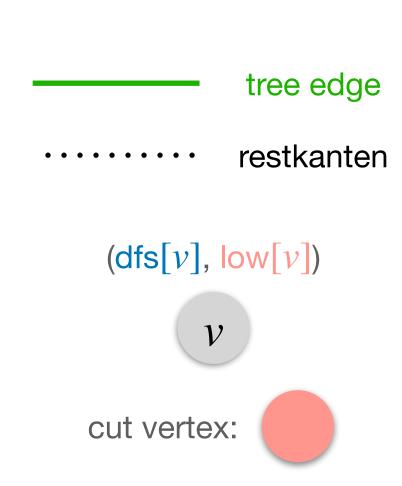


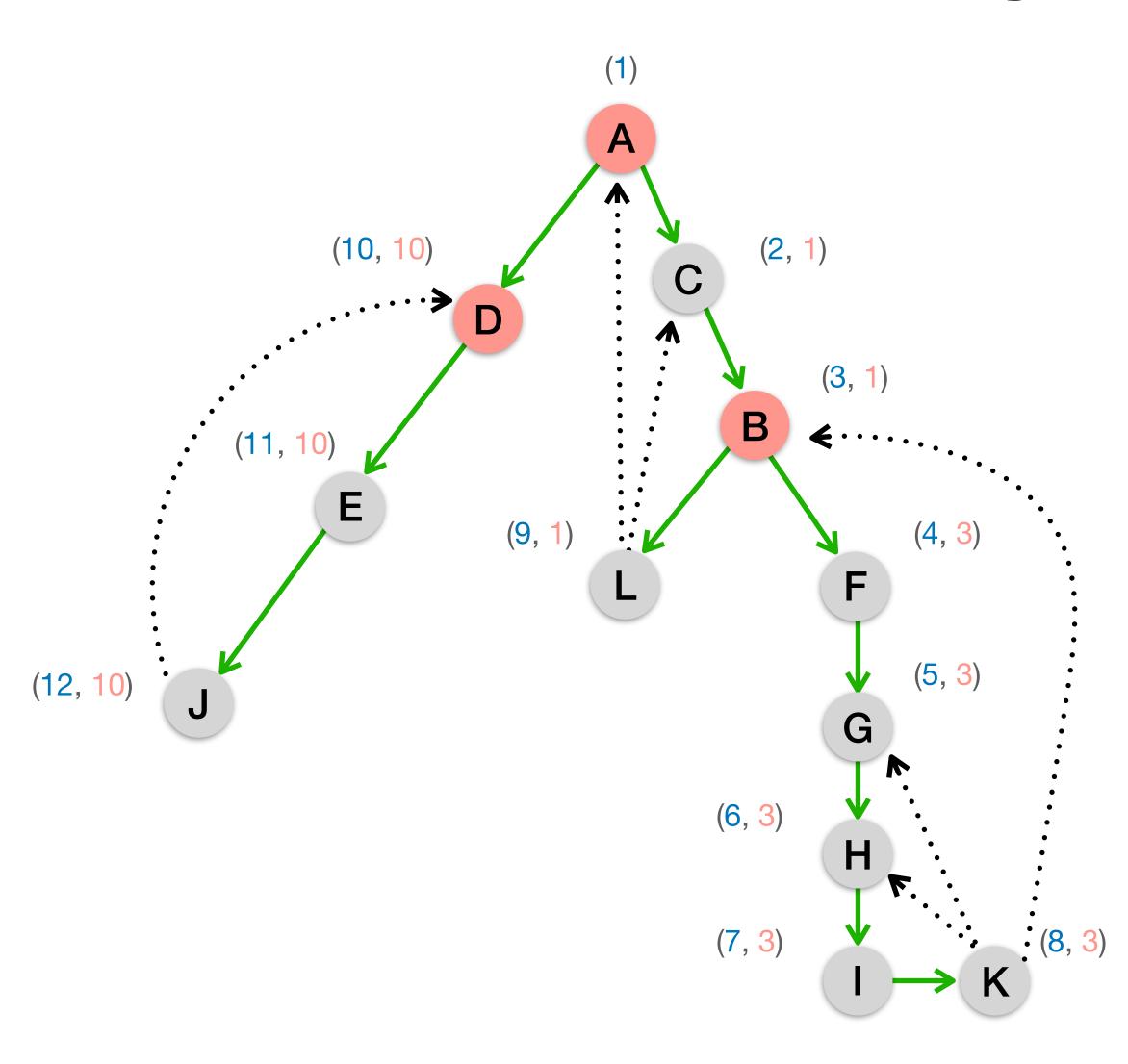
Identify the cut vertices

tree edge \cdots restkanten (dfs[v], low[v])

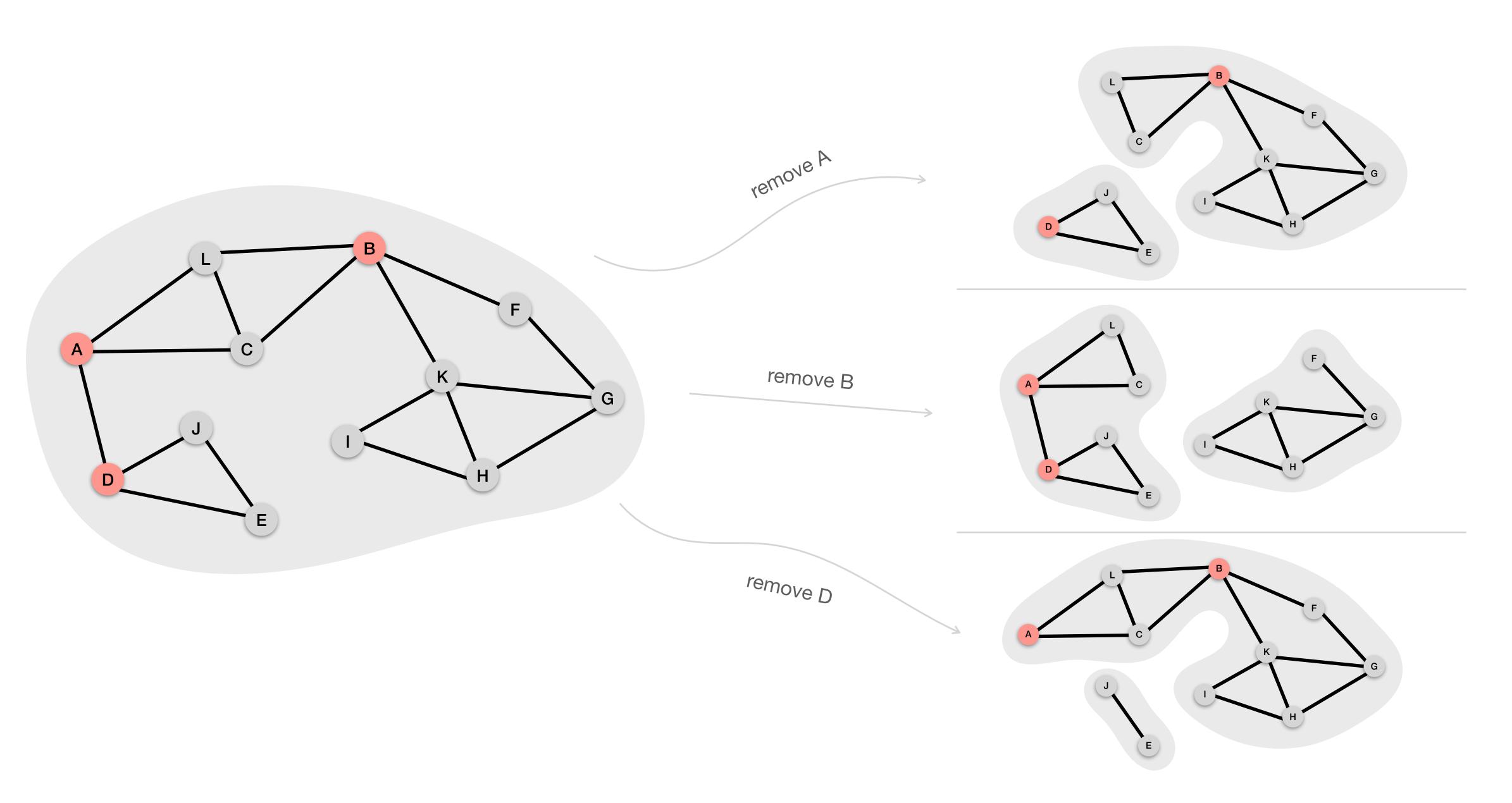


Identify the cut vertices





- A since it is the root and $deg(A) \ge 2$ in the DFS tree.
- since E is a neighbor of D and $low[E] = 10 \ge dfs[D] = 10$.
- since F is a neighbor of B and $low[F] = 3 \ge dfs[D] = 3$.



Pseudocode

```
DFS-Visit(G, v)
 1: num \leftarrow num + 1
 2: dfs[v] \leftarrow num
 3: low[v] \leftarrow dfs[v]
 4: isArtVert[v] \leftarrow FALSE
 5: for all \{v, w\} \in E do
         if dfs[w] = 0 then
 6:
          \mathsf{T} \leftarrow \mathsf{T} + \{\mathsf{v}, \mathsf{w}\}
 7:
             val \leftarrow DFS-Visit(G, w)
 8:
             if val \geq dfs[v] then
 9:
                   isArtVert[v] \leftarrow TRUE
10:
              low[v] \leftarrow min\{low[v], val\}
11:
         else dfs[w] \neq 0 and \{v, w\} \notin T
12:
              low[v] \leftarrow min\{low[v], dfs[w]\}
13:
14: return low[v]
```

```
DFS(G,s)
```

```
1: \forall v \in V: dfs[v] \leftarrow 0
```

```
2: num \leftarrow 0
```

3:
$$T \leftarrow \emptyset$$

4: DFS-VISIT
$$(G, s)$$

5: if s hat in T Grad mindestens zwei then

```
6: isArtVert[s] \leftarrow TRUE
```

7: else

8: $isArtVert[s] \leftarrow FALSE$

Kapitel 1 — Graphentheorie, p. 39

Result (cut vertices)

Satz 1.27. Für zusammenhängende Graphen G = (V, E), die mit Adjazenzlisten gespeichert sind, kann man in Zeit O(|E|) alle Artikulationsknoten berechnen.

Note that DFS normally runs in O(|V| + |E|) but since we assume G is connected, we know that $|E| \ge |V| - 1$ thus $|V| + |E| \le 2 \cdot |E| \le O(|E|)$.

What about bridges?

- First, notice that if G (connected) contains a bridge $e \in E$, any spanning tree of G must contain e.
- Hence the DFS tree must contain e, as it is a spanning tree of G.
- We reuse our Lemma from earlier:

Lemma: Let G = (V, E) be a connected graph. If $\{u, v\} \in E$ is a bridge, then u and v are cut vertices unless they have degree 1.

What about bridges?

Lemma: Let G = (V, E) be a connected graph. If $\{u, v\} \in E$ is a bridge, then u and v are cut vertices unless they have degree 1.

Let e = (v, w) be an edge in the DFS tree T, then e is a bridge if and only if low[w] > dfs[v].

On finding Hamiltonian cycles

- Finding Hamiltonian cycles is hard (NP-hard)
- The only known algorithms are exponential
- Naive: try out all possibilities for a Hamiltonian cycle. How many?

• At most (n-1)!/2. Why?

DP Algorithm

$$G = (V, E), V = [n] = \{1, 2, ..., n\}.$$

Let $S \subseteq V$ where $1 \in S$. Consider the following notation for all $x \in S$, $x \neq 1$

$$P_{S,x} = \begin{cases} 1, & \text{there exists a } 1\text{-}x \text{ path in } G \text{ that contains all vertices in } S \\ 0, & \text{otherwise.} \end{cases}$$

Now if there exists some $x \in N(1)$ where $P_{[n],x} = 1$, G contains a Hamiltonian cycle.

We can calculate the values for $P_{S,x}$ using dynamic programming.

DP Algorithm

$$G = (V, E), V = [n] = \{1, 2, ..., n\}.$$

Base cases: If $S = \{1,x\}$ for some $x \in V$, then $P_{S,x} = 1$ if $\{1,x\} \in E$.

Recursion:

$$P_{S,x} = \max\{P_{S\setminus\{x\},x'} \mid x' \in S \cap N(x), x' \neq 1\}$$



Hamiltonkreis (G = ([n], E))

- 1: // Initialisierung
- 2: for all $x \in [n]$, $x \neq 1$ do

3:
$$P_{\{1,x\},x} := \begin{cases} 1, & \text{falls } \{1,x\} \in E \\ 0, & \text{sonst} \end{cases}$$

- 4: // Rekursion
- 5: for all s = 3 to n do
- 6: for all $S \subseteq [n]$ mit $1 \in S$ und |S| = s do
- 7: for all $x \in S$, $x \neq 1$ do
- 8: $P_{S,x} = \max\{P_{S\setminus\{x\},x'} \mid x' \in S \cap N(x), x' \neq 1\}.$
- 9: // Ausgabe
- 10: if $\exists x \in N(1)$ mit $P_{[n],x} = 1$ then
- 11: return G enthält Hamiltonkreis
- 12: **else**
- 13: return G enthält keinen Hamiltonkreis

Pseudocode

The initialization part covers all subsets of size 2. We therefore start with subsets of size 3 and work our way up to n.

We go through all subsets of size s. If s=n, then the only subset will be [n] itself. Remember, we try to determine $P_{[n],x}$.

We demand that $x \neq 1$, because we started with 1 already.

 $S \setminus \{x\}$ ensures that any path that we extend by x does not contain x.

Here we attempt to "close" a Hamiltonian 1-x path in order to get a Hamiltonian cycle.

Result

Satz 1.34. Algorithmus Hamiltonkreis ist korrekt und benötigt Speicher $O(n \cdot 2^n)$ und Laufzeit $O(n^2 \cdot 2^n)$, wobei n = |V|.

Satz 1.34. Algorithmus Hamiltonkreis ist korrekt und benötigt Speicher $O(n \cdot 2^n)$ und Laufzeit $O(n^2 \cdot 2^n)$, wobei n = |V|.

Proof

Hamiltonkreis (G = ([n], E))

- 1: // Initialisierung
- 2: for all $x \in [n]$, $x \neq 1$ do
- 3: $P_{\{1,x\},x} := \begin{cases} 1, & \text{falls } \{1,x\} \in E \\ 0, & \text{sonst} \end{cases}$
- 4: // Rekursion
- 5: for all s = 3 to n do
- 6: for all $S \subseteq [n]$ mit $1 \in S$ und |S| = s do
- 7: for all $x \in S$, $x \neq 1$ do
- 8: $P_{S,x} = \max\{P_{S\setminus\{x\},x'} \mid x' \in S \cap N(x), x' \neq 1\}.$
- 9: // Ausgabe
- 10: if $\exists x \in N(1) \text{ mit } P_{[n],x} = 1 \text{ then }$
- 11: return G enthält Hamiltonkreis
- 12: **else**
- 13: return G enthält keinen Hamiltonkreis

$$\sum_{s=3}^{n} \sum_{S\subseteq[n], 1\in S, |S|=s} \sum_{x\in S, x\neq 1} O(???)$$

$$= \sum_{s=3}^{n} \sum_{S\subseteq[n], 1\in S, |S|=s} \sum_{x\in S, x\neq 1} O(n)$$

$$= \sum_{s=3}^{n} \binom{n-1}{s-1} (s-1)O(n)$$

$$= \sum_{s=3}^{n} \binom{n-1}{s-1} (s-1)O(n)$$
A subset of S' of size $s-1$ from

(*) where we used
$$\sum_{s=0}^{n-1} {n-1 \choose s} = 2^{n-1}$$
.

n-1 vertices; then

 $S = S' \cup \{1\}.$