Algorithms and Probability

Week 2

2025/02/27 — Georg Hasebe

DFS for finding bridges/cut vertices

» Given an undirected graph G = (V, E), find the bridges and cut vertices.
* Naive: remove edges/vertices and check for connectedness.

* As we will see, there is a more efficient approach using DFS.

Georg Hasebe 31

DFS recap
\D /J\ 'de

—\

Georg Hasebe

tree edge

restkanten

)
.........

DFS recap

33

DFS recap

tree edge A \
----------- restkanten
. C

Georg Hasebe 34

DFS for finding bridges/cut vertices

* We extend traditional DFS by maintaining the following information
throughout iteration:

« dfs|v] ... the time DFS “entered” vertex v (dfs|r] = 1, where r is the root of
the DFS tree).

» low|V] ... the lowest entry time dfs|w] we can reach from v through a
directed path consisting of an arbitrary number of tree edges and at most

one restkante.

Georg Hasebe 35

Georg Hasebe

tree edge

restkanten

36

A smallest dfs-number
- tree edge
/ A\
----------- restkanten :
df []) ettt > D
sty ’ A \1 C—>B—> L > A
(3, 1)

E / \ at most one restkante
© 1) = 4,3

L F :
: J > D
(12, 10) ‘l' (5, 3)
G 5 (12,10) (10, 10)
» :
69 ¥
H - smallest dfs-number
\LF :
(7, 3) e 1(8,9)
| — K-

Georg Hasebe 37

Let v € V such that v is not the root of the DFS tree.

We show that v is a cut vertex if and only if v has a neighbor u in the DFS tree 1
such that low|u| > dfs|[v].

Georg Hasebe 38

(=) Proof

Assume that v is a cut vertex. Then G[V\{Vv}] has at least 2 connected
components Z; and Z,. Without loss of generality, assume s € Z;.

Every path from s to a vertex in Z2 must include v, we have
| = dfs[s] < dfs|[v] < dfs[w] Vw € 4%,

Since G[Z,] is a connected component in G[V\ {v}], there cannot be an edge
fromw € Z,toavertexu € V\({v} U Z,).

Georg Hasebe 39

Since G[Z,] is a connected component in G[V\{v}], there
fromw € Z,toavertexu € V\({v} UZ%Z,).

G[VA{v}]
w remove v
o e et Z2 — s 7 w 7
S 1 1 2
there could possibly be more than 2 connected components after removing v G[Zz]
hence Z, is only part of the bigger shaded region which contains all vertices V\({V} U Zz)
that are not in Z; or v itself. If there was such an , then u would be connected to Z, and therefore element

of Z, but V\({v} U Z,) doesn’t contain vertices from Z,.
Georg Hasebe 40

(=) Proof

Since G[Z,] is a connected component in G[V\ {v}], there cannot be an edge
fromw € Z,toavertexinu € V\({v} UZ,).

Thus low|w] is at least dfs|v] for all w € Z,. Since v is connected to Z,, it has
at least one neighbor w € Z, such that low|w] > dfs[v].

Georg Hasebe 41

DiskMath Recap

Contraposition:
P — Q is equivalentto =0 — =P
Here:

Vv is a cut vertex < v has a neighbor u such that low|u] > dfs|V]

<

v is not a cut vertex = v has no neighbor 1« such that low|u]| > dfs|v]

Georg Hasebe 42

using contraposition

(<)

Assume Vv IS hot a cut vertex.

Let 1 be the DFS tree rooted at s and let wy,, ..., w; be all the neighbors of v in
G. Without loss of generality, assume dfs[w,] < dfs|v].

Georg Hasebe 43

Georg Hasebe

WO dfs[wy] < dfs[v] since we reach wy, earlier from s than v.
W1 W2 © o Wy
by construction of the DFS algorithm, the subtrees rooted at wy, ..., w;, cannot be connected.

but they have to be connected in G, otherwise v would be a cut vertex.

44

using contraposition

(<) Proof

For every neighbor wy, ..., w, there exists a path using a restkante to a vertex
with smaller dfs-number.

®S

< dfs[v]

Georg Hasebe 45

using contraposition

(<) Proof

For every neighbor wy, ..., w, there exists a path using a restkante to a vertex
with smaller dfs-number.

Thus low|w] is greater than dfs|v] for all neighbors w of v, meaning that there is
no neighbor w of v such that low|v] > dfs|u].

Georg Hasebe 46

What about the root?

Let T"be the DFS tree rooted at s. If deg(s) > 2 then s is a cut vertex.

Proof. Assume deg(s) = [> 2. By construction of the DFS algorithm, the
subtrees rooted at wy, ..., w; cannot be connected. Even if there was a

restkante from a subtree to s, after removing s the vertices contained in the
subtrees become disconnected in G[V\ {s}].

Thus s Is a cut vertex.

Georg Hasebe 47

Georg Hasebe

tree edge

restkanten

)

Identify the cut vertices

48

Identify the cut vertices

(1)
A A since it is the root and deg(A) > 2
........... restkanten (10, 10) / . 2, 1) D since E is a neighbor of D and

| 5 . ow[E] = 10 > dfs[D] = 10.
(dfs[v],) LA \
V S B since F is a neighbor of B and
(1,10 : Bl . ow[F] = 3 > dfs[D] = 3.
cut vertex: E / \ k
. (9,) :_' (4’)

: L F
(12, 10) \l' 5, 3)
J Gh
©, 9 v
TR :(8,2)
| — K-

Georg Hasebe 49

G\/
\\\\/\/\ | /\ \\\/\
N 7

BN

DFS-VisiT(G,v) PSGUdOCOde

1: num ¢ num-+]

2: dfs[v] < num

3: low[v] ¢ dfs[V] DFS(G,s)

4: isArtVert|v] ¢« FALSE 1: WeV: dfsv]« 0

5. for all {v,w} € E do 2: num — 0

6: if dfs(w] =0 then 3. T« 0

7: T T+{v,w} 4: DFS-VisIiT(G, s)

8: val DFS‘_VISIT(G’W) 5: if s hat in T Grad mindestens zwei then
9: it val > dfs[v,. then 6: isArtVert(s] « TRUE
10: isArtVert|v] ¢« TRUE 7. else

11: low[v] ¢~ min{low|v], val} 8: isArtVert(s| ¢ FALSE
12: else dfsiw] #0 and {v,w} & T .

13: low[v] < min{low[v], dfs(w]}

14: return low[V]

Kapitel 1 — Graphentheorie, p. 39

Georg Hasebe 51

Result (cut vertices)

Satz 1.27. Fiir zusammenhangende Graphen G = (V, E), die mit Ad-
jazenzlisten gespeichert sind, kann man in Zeit O(|E|) alle Artikula-

tionsknoten berechnen.

Note that DFS normally runs in O(| V| + | E|) but since we assume G is connected, we know that | E| > | V| — 1 thus

Georg Hasebe

[VI+IE] <2-[E] < O(|E]).

52

What about bridges?

» First, notice that if G (connected) contains a bridge ¢ € E, any spanning tree
of G must contain e.

» Hence the DFS tree must contain e, as it is a spanning tree of G.

e We reuse our Lemma from earlier:

Lemma: Let G = (V, E) be a connected graph. If {u, v} € E is a bridge, then
u and v are cut vertices unless they have degree 1.

Georg Hasebe 53

What about bridges?

Lemma: Let G = (V, E) be a connected graph. If {u,v} € E is a bridge, then
1 and v are cut vertices unless they have degree 1.

Let e = (v, w) be an edge in the DFS tree T then e is a bridge if and only if
low|[w]| > dfs|v].

Georg Hasebe 54

On finding Hamiltonian cycles

* Finding Hamiltonian cycles is hard (NP-hard)
* The only known algorithms are exponential

* Naive: try out all possibilities for a Hamiltonian cycle. How many?

e Atmost (n—1)!/2. Why?

Georg Hasebe 64

DP Algorithm

G=WV,E),V=In]l={1,2,....,n}.
Let S C Vwhere 1 € §. Consider the following notation forall x € S, x # 1

PS —

{ 1, there exists a 1-x path in G that contains all vertices in §
X

0, otherwise.

Now if there exists some x € N(1) where P}, ., = 1, G contains a Hamiltonian
cycle.

We can calculate the values for PS’X using dynamic programming.

Georg Hasebe 66

DP Algorithm

G=WV,E),V=In]l={1,2,....,n}.

Base cases: If S = {1,x} forsomex € V,then Pg, = 1if {1,x} € E.

Recursion:
— / /
Pg . = max{Pg | X €SN Nx),x" # 1}
PS\{X},X’=1 PS,le
1 ..."-.......o'.'... x, X 1 ...-'.........“.... x, .
q x'€ SN Nx)

Georg Hasebe 67

HAMILTONKREIS (G = ([n],E))

1: // Initialisierung
2: forall x € In], x #1 do

10: if 4
11:
12: else
13:

1, falls{l,x} €E

0, sonst

Paxx =

// Rekursion
for all s =3 ton do

forall S C nJmit 1 € S und |S| =s do
forall x € S, x # 1 do
Pg,x — maX{Ps\{x},X/ ‘ x' €SN N(X),X’ 75]}

// Ausgabe

x € N(1) mit Py, =1 then
return G enthalt Hamiltonkreis

return G enthalt keinen Hamiltonkreis

Georg Hasebe

Pseudocode

The initialization part covers all subsets of
size 2. We therefore start with subsets of

size 3 and work our way up to n.

We go through all subsets of size s. If
s = n, then the only subset will be [n] itself.
Remember, we try to determine P, ..

We demand that x # 1, because we started
with 1 alreadly.

S\ {x} ensures that any path that we
extend by x does not contain x.

Here we attempt to “close” a

Hamiltonian 1-x path in order to get a
Hamiltonian cycle.

68

Result

Satz 1.34. Algorithmus HAMILTONKREIS ist korrekt und benotigt Spei-
cher O(n - 2") und Laufzeit O(n? - 2"), wobei n = |V/.

Georg Hasebe 69

Satz 1.34. Algorithmus HAMILTONKREIS ist korrekt und benotigt Spei- Pr o Of
cher O(n - 2") und Laufzeit O(n? - 2"), wobei n = |V|.

n
HAMILTONKREIS (G = ([n],E)) 299
1: // Initialisierung Z Z Z 0(. e)

2: forall x € n], x # 1 do s=3 SC[n],1€8S,|S|=s xS x#£1
(
1, falls{l,x}€E

3: P{l,x},x = < { }

n
0, sonst
// Rekursion Z Z Z O(n)

4:
5. for all s =3 to n do s=3 SC[n],1&€S,|S|=5s x&Sx#1
6: forall S C [n] mit 1 € S und |S| = s do .
7: forallx €S, x #1do n— 1
Ps, — max(Poe [X' € SONGO, X £, = Z (s — HO®n)
9: // Ausgabe —3 S — 1
10: if 3x € N(1) mit Ppyx =1 then - |.S'| = s, but we exclude 1.
11: return G enthdlt Hamiltonkreis <0 (n2 . 2n) A subset of §” of size s — 1 from
12: else — n — 1 vertices; then
13: return G enthélt keinen Hamiltonkreis §=5U{l}.
(*) where we used ”Zl (”; 1) =1

=0
Georg Hasebe > 70

