Algorithm and Data Structures Recap

2025/02/20 — Georg Hasebe

Algorithms and Data Structures Recap

Math notation and terminology

Notat
N atii Zahle {1,2,3,...}
No die natiirlic Zahlen und die Null: Ny ={0,1,2,3,...}
n] die natiirlichen Zahlen von 1 bis n: [n] ={1,2,...,n}
Z die ganzen Zahlen: Z={...,—3,—-2,—1,0,1,2,3,...}
e N={123,...},N, = {0,1,2.3,...}, [n] = {1,2.3,...,n} =
, , , e o o , O , , , , e o o , ’ , , e o o , R* dTe p.051t1ven re.ellen Zahlen
R-, die nicht-negativen reellen Zahlen
ichnet den na Logarith: is e = 2.71828...
log bezeichnet den Logarithmus zur Basis 2
|A] zeichnet die K (Anzahl) einer Menge A
A xB kartesische Produkt der Mengen A und B:
n n A xB={(a,b)|a€ A,bec B}
e In logarithm to the base ¢, log logarithm to the base 2 e
g , g (:) die Menge der k-elementigen Teilmengen von A:
(3) =XIXC A X =Kk}
G = (V,E) ein (ungerichteter) Graph mit Knotenmenge V und
Kantenmenge E C (‘{)
(V,A) ein gerichteter Graph mit Knotenmenge V und
Kante: ACVx
in de ck auf de

« |X| cardinality of X (number of elements in X)

siehe Skript.

e 22 ={Y | Y C X} (power set of X)

X

A\)= Y| YCX,|Y| =k} (the set of subsets of X of cardinality k)

Georg Hasebe 2

Examples

[3] = {1,2,3} X=1{12)
| X| =2
2% = {@,{1},{2},{1,2}}

A=1{1,2,34}

(13) = 11121 12,3, (341 11,35, 11,4, 12,41)

(*) The notation <12> also denotes the binomial coefficient, where A is not a set but an integer.

Georg Hasebe 3

Algorithms and Data Structures Recap

Graph notation and terminology
- G=(V,E), |V], |E]...
e No(v) :={u € V| {u,v} € E} (Nachbarschaft von v in G)

« G|X], X C V (induced subgraph with vertex set X and edges of E that
have both endpoints in X)

. deg(v), deg;(v), deg, (), deg™(v), deg™(v) (humber of edges: in/- for

“eingehend”, out/+ for “ausgehend”)

(*) We often shorten N(v) to N(v) when it’s clear what graph G is meant.

Georg Hasebe 4

Examples
(V E)

G| X] C

O—J>

H

/ \ X ={C,E,F,G,H) X ——>Y

~

Z
NG(C) — {Aa G9 H}

deg™(X) = de X)=1
deg(F)=2 g() gOUt()

deg (X) = degi(X) =0

Georg Hasebe 3

Algorithms and Data Structures Recap

Notation and terminology

« A sequence of vertices < vy, V,, ...,V > ,suchthatv,and v, ; are
connected by an edge

e Is a walk (Weg) of length kK — 1.

« Is a closed walk (geschlossener Weg), if vi = v,.

e |s a path (Pfad), if all vertices are distinct.

« Is a cycle (Kreis), if all vertices are distinct and v; = v;,.

Algorithms and Data Structures Recap

Important graphs

« K, denotes the complete graph on n vertices, where every pair of different
vertices Is connected by an edge.

 (, denotes the cycle graph on n vertices.

P denotes the path graph on n vertices.

Georg Hasebe 7

Examples

Algorithms and Data Structures Recap

Bipartite graphs

* A bipartite graph Is a graph whose vertices can be divided into two disjoint
sets U and V such that every edge connects a vertex in U toonein V.

» We usually write G = (U w V, E) for a bipartite graph G.

(*) disjoint simply meansthat UN'V = &
(**) the symbol W is often used to denote a disjoint union of sets, i.e. UU Vsuchthat UNnV = &

Georg Hasebe 9

G=UwV,E) G=UwV,E)

(") A bipartite graph must not be connected, hence G is also bipartite.

Georg Hasebe 10

Bipartite?

A B C A/T/C A/C
D E F D E F D E F

Georg Hasebe 11

Georg Hasebe

Bipartite?

(*) The left graph contains an odd-length cycle < B, E, F' > . A bipartite graph cannot contain any odd-length cycles!
(**) Proof left as an exercise (or click here).

12

https://math.stackexchange.com/questions/311665/proof-a-graph-is-bipartite-if-and-only-if-it-contains-no-odd-cycles

Algorithms and Data Structures Recap

Trees

A tree is an undirected graph G that satisfies any of the following equivalent
conditions:

» (G is connected and acyclic.

» (G is acyclic and a simple cycle is formed if any edge is added.

» G is connected and has n — 1 vertices.

» (G is connected, but would be disconnected if single edge is removed.

» Any two vertices in G can be connected by a unique path.

(*) for the third bullet point we assume that G has a finite amount of vertices.

Georg Hasebe 13

Georg Hasebe

D B\/A /\
\

I'n=(V,E E
1 () F/ Tz:(V’E)
G=(V,LE)

() 1, and 15 are trees, 15 is a binary tree since any node has at most two children.

(**) G is not a tree since (1) it has a cycle (2) it has n = 6 edges (instead of n — 1 = 35) (3) it would not be disconnected
if the red edge were to be removed (4) D and I are connected by two paths.

Examples |

14

Georg Hasebe

Examples I

A A
AN 71N\

T2 — (Va E)

(*) Students sometimes think of only binary trees (e.g. 1) when reasoning about trees. However, 715 is a tree as welll

15

Algorithms and Data Structures Recap

Trees, connected components and forests

* A leafis a vertex in a tree of degree one.

* A connected component of an undirected graph is a connected subgraph that
IS not part of any larger connected subgraph. The connected components of

any graph partition its vertices into disjoint sets.

* A forest is an undirected and acyclic graph whose connected components are
trees. In other words, it consists of a disjoint union of trees.

16

Georg Hasebe

Georg Hasebe

F=(,E)

(*) I is a forest. The three connected components of I are in red blobs, each of the graphs
contained in one of the red blobs is a tree.

(**) The subgraph on the vertices {C, D, F'} is a tree, and both F'and D is a leaf.

Examples

17

Algorithms and Data Structures Recap

Spanning trees

» A spanning tree T of an undirected graph G is a subgraph that is a tree which
includes all the vertices of G.

A minimum spanning tree (MST) is a spanning tree with the minimum possible
sum of edge weights.

Georg Hasebe 18

Examples

A
G = (V,E) 1
D
A
T 5 1 ¢
1 99 99]
F
E F
O 1
1 99 99
F H | A
1 1
1
D
F

(*) Both T and T, are spanning trees of G.
(**) T; is the unique minimum spanning tree of G of total weight 3.
(***) G is the so called grid graph.

Georg Hasebe

Tl — (Va E2)

21 ¢
T E T F
H |
1 1
—B———C
99 99
E F
99 99
H |
1
T2 — (Va E2)

19

Algorithms and Data Structures Recap

Cut vertices and bridges

* A cut vertex is any vertex whose removal increases the number of connected
components.

* A bridge is any edge whose removal increases the number of connected
components.

Georg Hasebe 20

Examples

p— ° B
\/ B A C
E
/C

F/
G = (V,E) / F/E

Gz — (V29 Ez)
Gl — (Va El)

(*) The blue edge is a bridge. It's removal increases the number of connected components in G (which is originally one) to two (see graph G).
() The reddish vertex is a cut vertex. It’'s removal increases the number of connected components in G (which is originally one) to three (see in graph G,).
(***) Note there are multiple cut vertices and bridges in G. The vertex C is not a cut vertex and the edge { E, C} is not a bridge.

Georg Hasebe 21

AnD Recap

BFS-VISIT-ITERATIVE(G, v)

1 Q<0

2 Markiere v als aktiv

3 ENQUEUE(Q,v)

4 while Q # () do

5 w < DEQUEUE(Q)

Queue

6 Markiere w als besucht

7 for each (w,z) € E do

8 if z nicht aktiv und z noch nicht besucht then

9 Markiere x als aktiv

10 ENQUEUE(Q,)
DFS-VisIT-ITERATIVE(G, v)
A
Stack 1 S« 0
2 PusH(S,v)

3 while S # () do
4 w < Popr(S5)
if w noch nicht besucht then

/
\\

\

(|

__{/

—

Markiere w als besucht
for each (w,x) € E in reverse order do
if £ noch nicht besucht then
PUSH(S, x)

O 00 3 O Ot

Georg Hasebe 22

Solving graph exercises?

* Questions that | often received in my AnD exercise classes are
« How do | solve graph exercises?
 How rigorous/long should my proof be?

* Of course there is not a single “one size fits all” solution, but what | always tell
them is, the more you know about graphs (e.g. properties of a graph, useful
lemmas, equivalences...), the better! Let’s go through an example.

Georg Hasebe 23

For any graph G = (V, E) we have: the number of vertices with odd degree is
even.

Georg Hasebe

24

For any graph G = (V, E) we have: the number of vertices with odd degree is
even.

Theorem 1.2. For every graph G = (V, E) we have Z deg(v) =2 |E|.

veV

(*) knowing Theorem 1.2. things get a lot easier!
Georg Hasebe 25

For any graph G = (V, E) we have: the number of vertices with odd degree is
even.

Theorem 1.2. For every graph G = (V, E) we have Z deg(v) =2 |E|. |
veV

Proof. Let V, and V_ be the vertex set of the vertices with even and odd
degree.

We have Z deg(v) = Z deg(v) + Z deg(v).

veV vevV, veV,

The sum of all even degrees is even. The sum of kK odd numbers is even if and
only if k is even. Using Theorem 1.2. we conclude that |V, | is even.

(") the first gray box is corollary 1.3. in the script.

Georg Hasebe 26

Algorithms and Data Structures Recap

Topological sort/ordering

» A topological ordering of a directed graph is a linear ordering of its vertices
such that for every directed edge (u, v) from vertex u to vertex v, u comes
before v in the ordering.

* A directed acyclic graph (DAG) is a directed graph without directed cycles.
* A topological ordering is only possible if and only if the graph is a DAG.

Georg Hasebe 27

Georg Hasebe

G=(V,E)

v
~J

E

Mmeé€<——0O €&—— >

G H

A,B,C,D,E,.F,G,H

(*) note that G has many topological orderings. Anotheroneis C,A,B,E,D, F, G, H.

28

