Math notation and terminology

•
$$\mathbb{N} = \{1, 2, 3, \dots\}, \mathbb{N}_0 = \{0, 1, 2, 3, \dots\}, [n] = \{1, 2, 3, \dots, n\}$$

- \ln logarithm to the base e, \log logarithm to the base 2
- |X| cardinality of X (number of elements in X)
- $2^X = \{Y \mid Y \subseteq X\}$ (power set of X)
- $\binom{X}{k} = \{Y \mid Y \subseteq X, |Y| = k\}$ (the set of subsets of X of cardinality k)

Notationen die natürlichen Zahlen: $\mathbb{N} = \{1, 2, 3, \ldots\}$ die natürlichen Zahlen von 1 bis n: $[n] = \{1, 2, ..., n\}$ die ganzen Zahlen: $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ $\mathbb{R}_{>0}$ die nicht-negativen reellen Zahlen bezeichnet den natürlichen Logarithmus zur Basis e=2.71828bezeichnet den Logarithmus zur Basis 2 |A| bezeichnet die Kardinalität (Anzahl Elemente) einer Menge A $A \times B$ das kartesische Produkt der Mengen A und B: $A \times B = \{(a, b) \mid a \in A, b \in B\}$ 2^A die Potenzmenge von A: $2^A = \{X \mid X \subseteq A\}$ $\binom{A}{k}$ die Menge der k-elementigen Teilmengen von A: $\binom{A}{k} = \{X \mid X \subset A, |X| = k\}$ G = (V, E) ein (ungerichteter) Graph mit Knotenmenge V und Kantenmenge $E \subseteq \binom{V}{2}$ D = (V, A) ein gerichteter Graph mit Knotenmenge V und $Kantenmenge \ A \subseteq V \times V$ = min der Ausdruck auf der linken Seite soll minimiert werder

siehe Skript.

Examples

$$[3] = \{1,2,3\}$$

$$X = \{1,2\}$$
$$|X| = 2$$
$$2^{X} = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$$

$$A = \{1,2,3,4\}$$

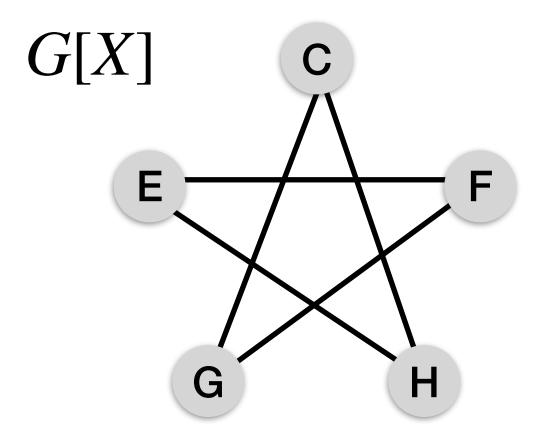
$$\binom{A}{2}$$
 = {{1,2}, {2,3}, {3,4}, {1,3}, {1,4}, {2,4}}

(*) The notation $\binom{A}{k}$ also denotes the binomial coefficient, where A is not a set but an integer.

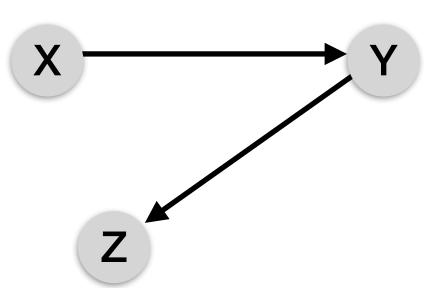
Graph notation and terminology

- G = (V, E), |V|, |E|...
- $N_G(v) := \{u \in V \mid \{u, v\} \in E\}$ (Nachbarschaft von v in G)
- G[X], $X \subseteq V$ (induced subgraph with vertex set X and edges of E that have both endpoints in X)
- deg(v), $deg_{in}(v)$, $deg_{out}(v)$, $deg^{-}(v)$, $deg^{+}(v)$ (number of edges: in/- for "eingehend", out/+ for "ausgehend")

Examples



$$X = \{C, E, F, G, H\}$$



$$N_G(C) = \{A, G, H\}$$
$$\deg(F) = 2$$

$$deg^{+}(X) = deg_{out}(X) = 1$$
$$deg^{-}(X) = deg_{in}(X) = 0$$

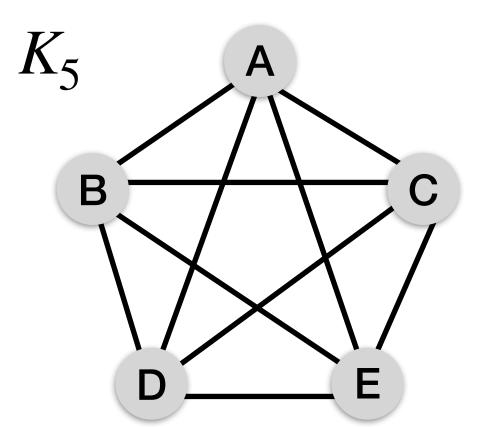
Notation and terminology

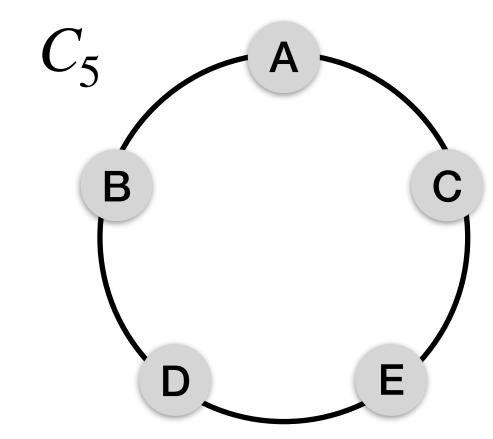
- A sequence of vertices $< v_1, v_2, ..., v_k >$, such that v_i and v_{i+1} are connected by an edge
 - Is a walk (Weg) of length k-1.
 - Is a closed walk (geschlossener Weg), if $v_1 = v_k$.
 - Is a path (Pfad), if all vertices are distinct.
 - Is a cycle (Kreis), if all vertices are distinct and $v_1 = v_k$.

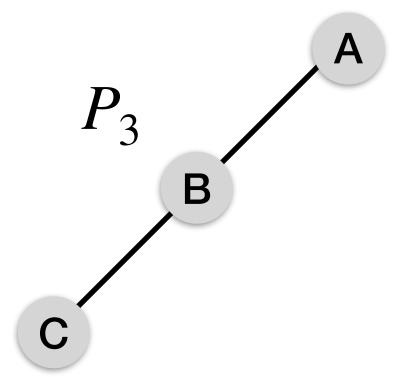
Important graphs

- K_n denotes the *complete graph* on n vertices, where every pair of different vertices is connected by an edge.
- C_n denotes the cycle graph on n vertices.
- P_n denotes the path graph on n vertices.

Examples







Bipartite graphs

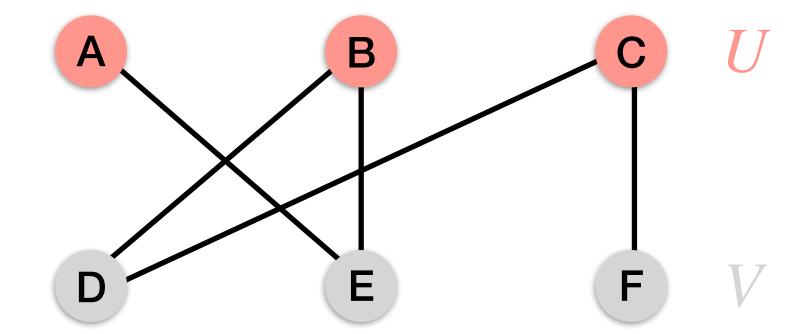
- A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V.
- We usually write $G = (U \uplus V, E)$ for a bipartite graph G.

(*) disjoint simply means that $U \cap V = \emptyset$

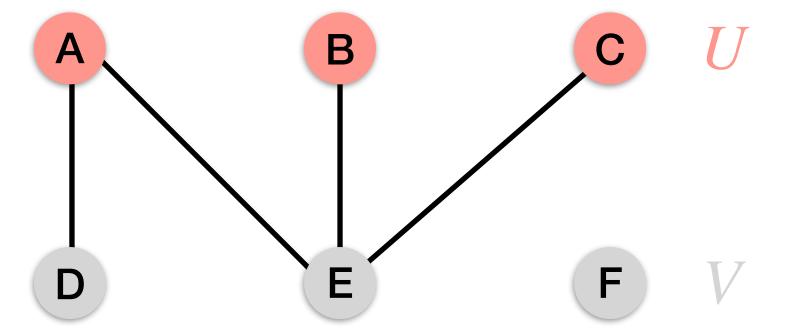
^(**) the symbol \uplus is often used to denote a disjoint union of sets, i.e. $U \cup V$ such that $U \cap V = \emptyset$

Example

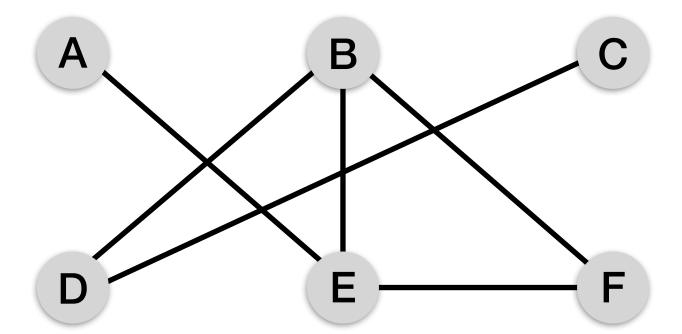
$$G = (U \uplus V, E)$$

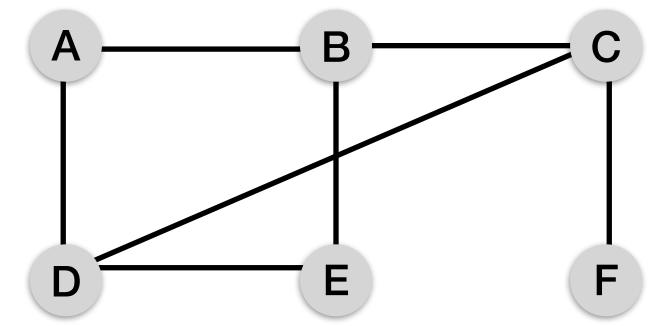


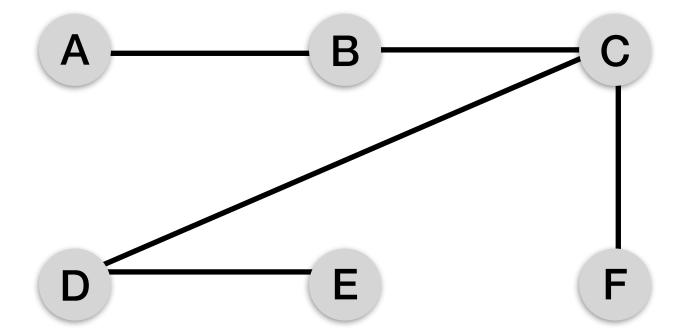
$$\tilde{G} = (U \uplus V, \tilde{E})$$



Bipartite?

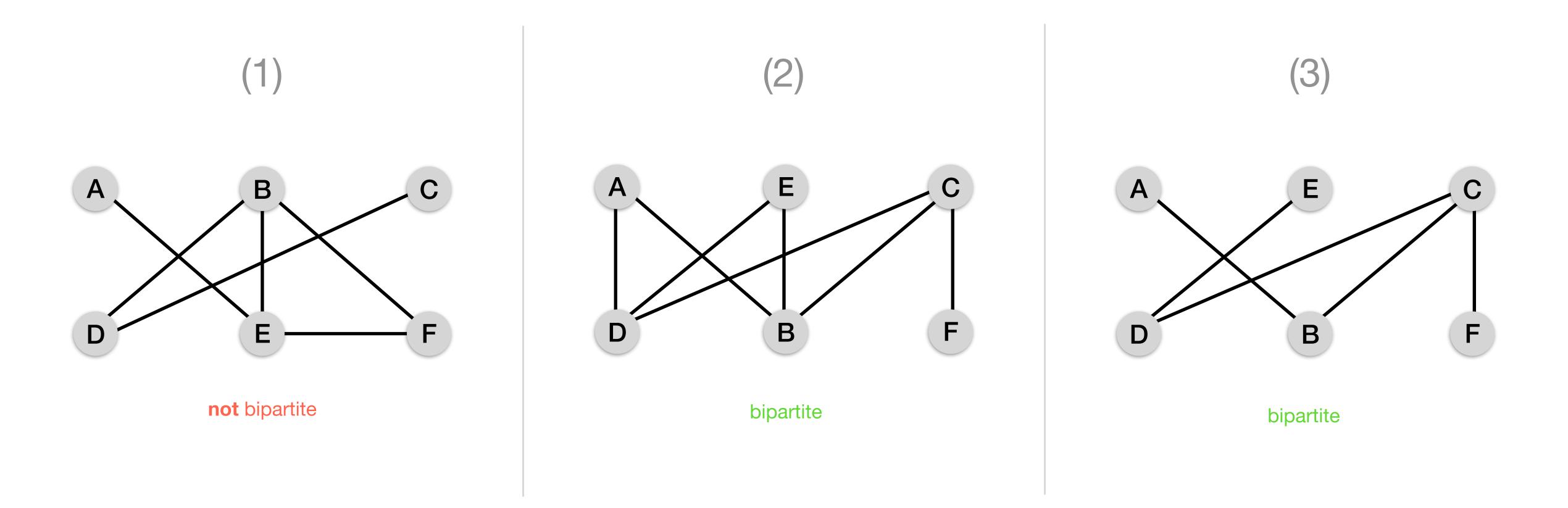






11

Bipartite?



(*) The left graph contains an odd-length cycle $\langle B, E, F \rangle$. A bipartite graph cannot contain any odd-length cycles!

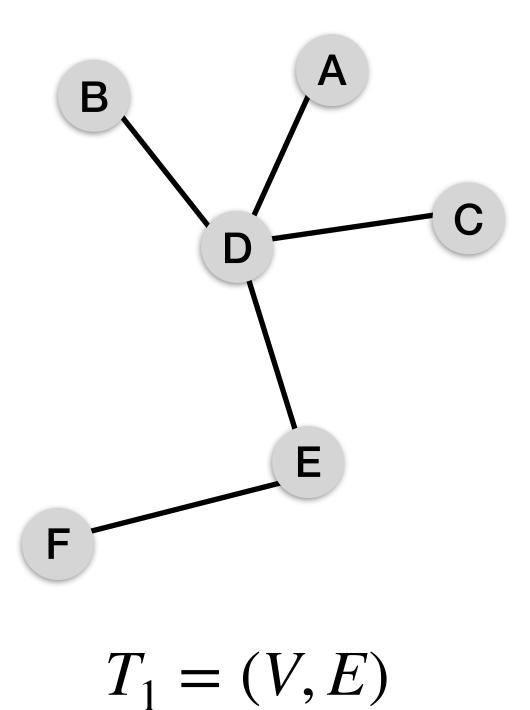
(**) Proof left as an exercise (or click here).

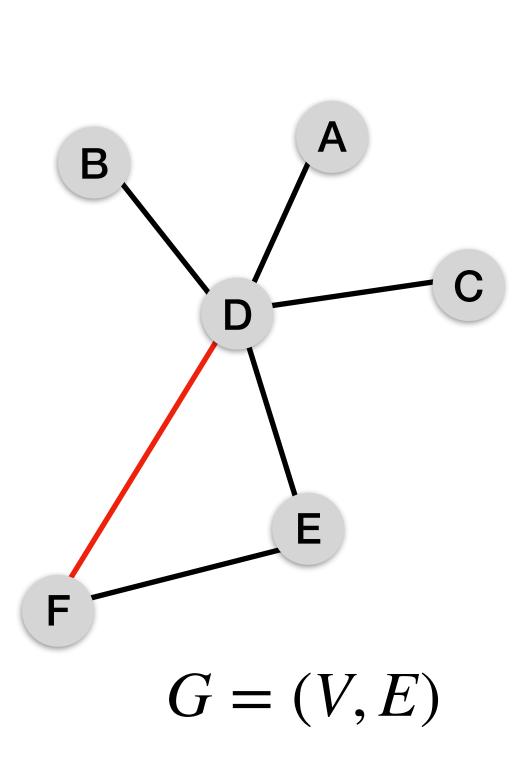
Trees

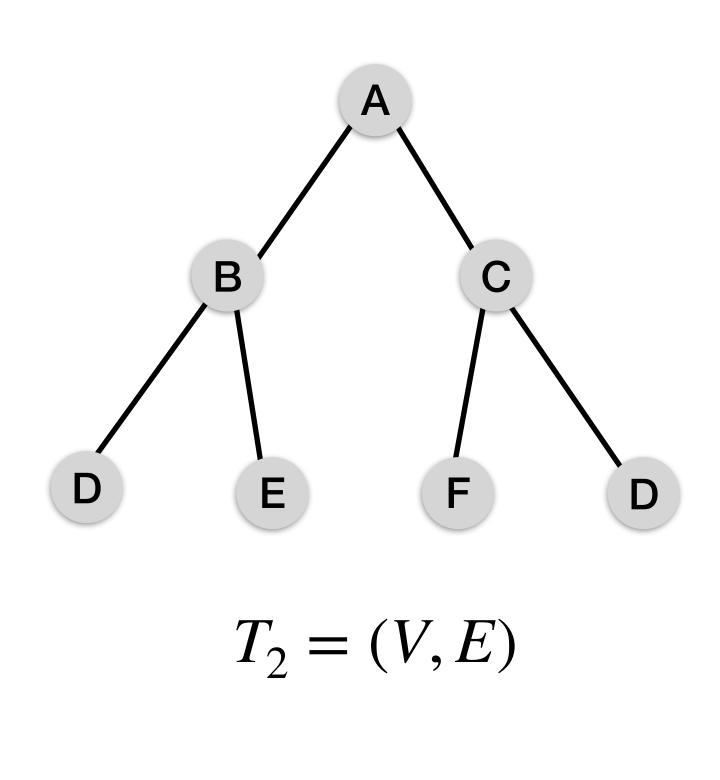
A *tree* is an undirected graph G that satisfies any of the following equivalent conditions:

- G is connected and acyclic.
- G is acyclic and a simple cycle is formed if any edge is added.
- G is connected and has n-1 vertices.
- ullet G is connected, but would be disconnected if single edge is removed.
- Any two vertices in G can be connected by a unique path.

Examples I

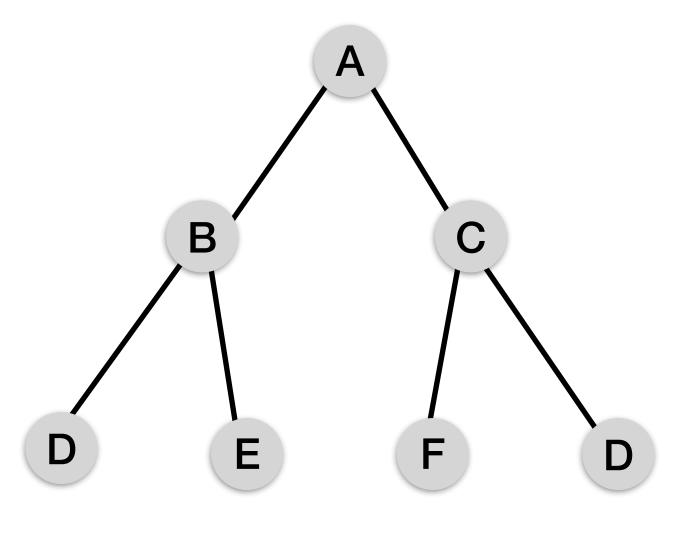




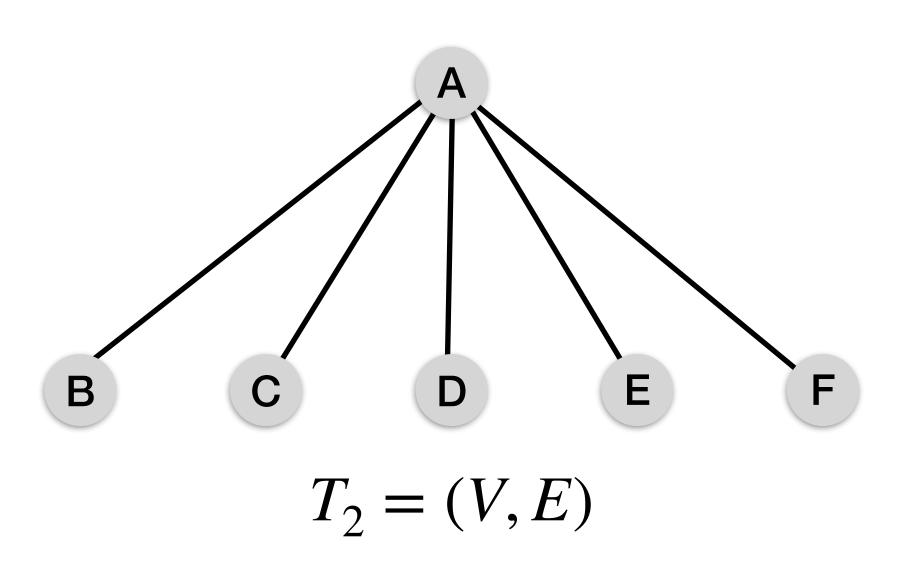


- (*) T_1 and T_2 are trees, T_2 is a *binary tree* since any node has at most two children.
- (**) G is not a tree since (1) it has a cycle (2) it has n=6 edges (instead of n-1=5) (3) it would not be disconnected if the red edge were to be removed (4) D and F are connected by two paths.

Examples II



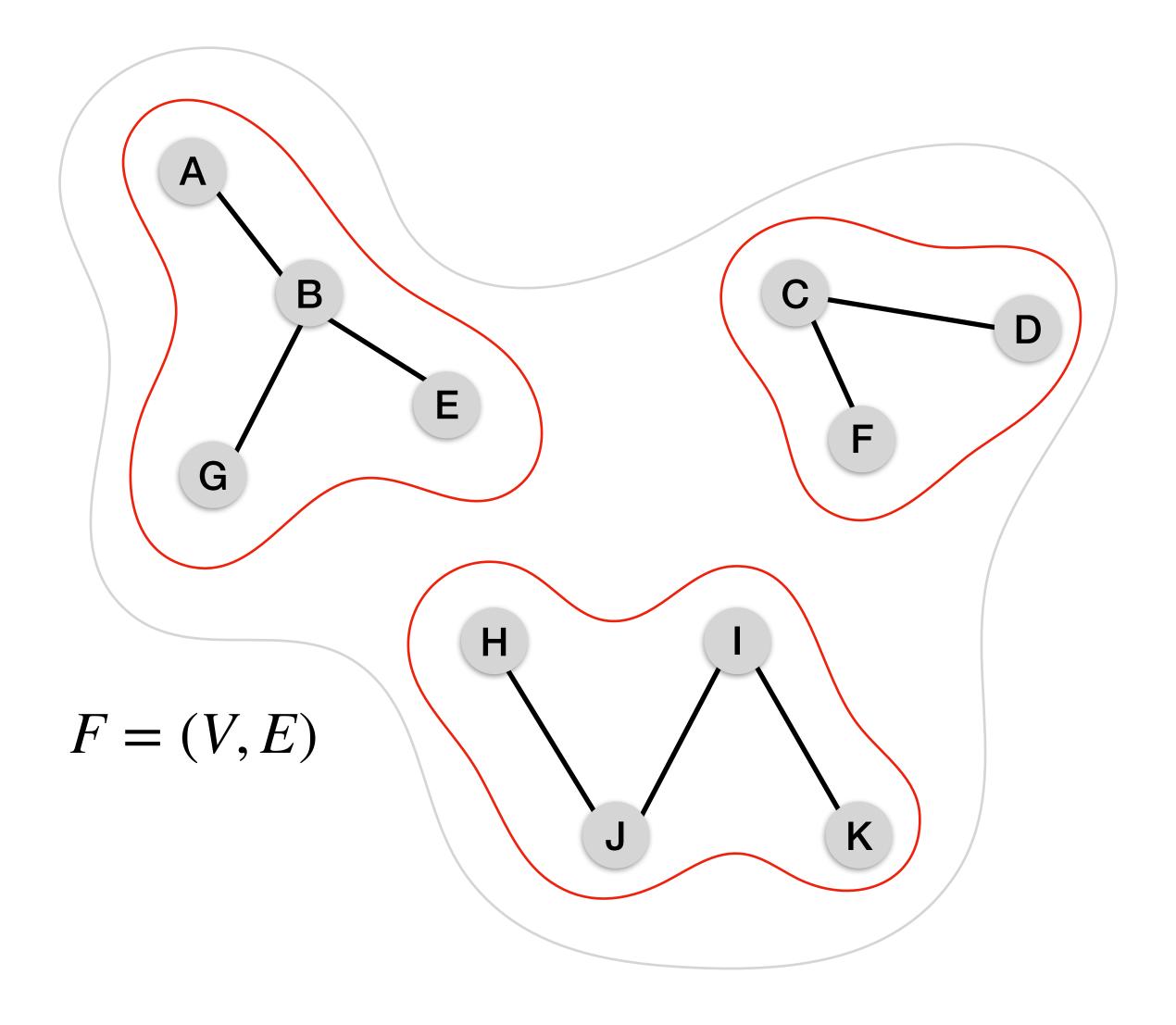
 $T_1 = (V, E)$



(*) Students sometimes think of only binary trees (e.g. T_1) when reasoning about trees. However, T_2 is a tree as well!

Trees, connected components and forests

- A leaf is a vertex in a tree of degree one.
- A connected component of an undirected graph is a connected subgraph that is not part of any larger connected subgraph. The connected components of any graph partition its vertices into disjoint sets.
- A forest is an undirected and acyclic graph whose connected components are trees. In other words, it consists of a disjoint union of trees.



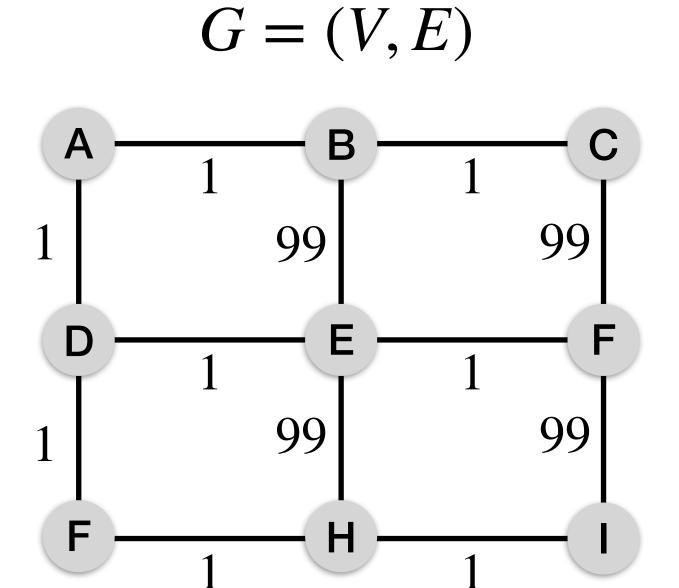
^(*) F is a *forest*. The three *connected components* of F are in red blobs, each of the graphs contained in one of the red blobs is a tree.

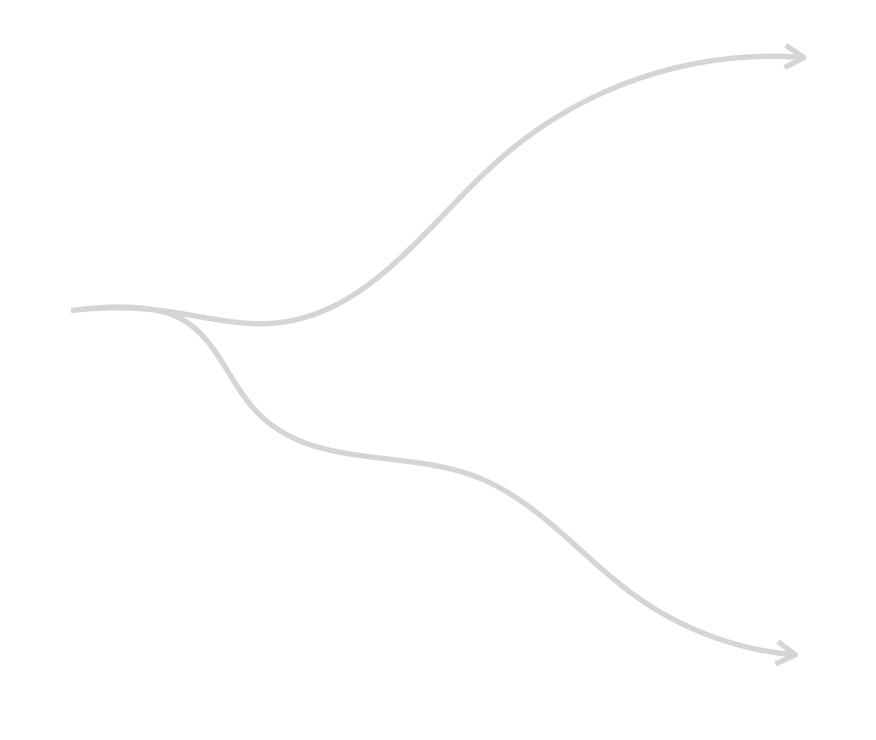
^(**) The subgraph on the vertices $\{C, D, F\}$ is a tree, and both F and D is a *leaf*.

Spanning trees

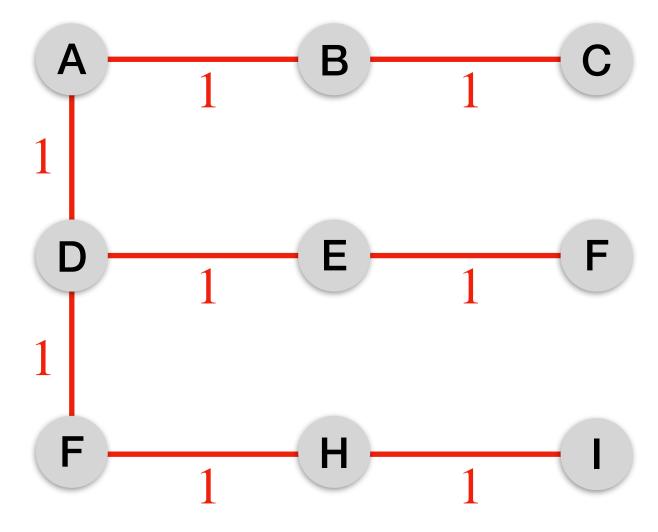
- A spanning tree T of an undirected graph G is a subgraph that is a tree which includes all the vertices of G.
- A minimum spanning tree (MST) is a spanning tree with the minimum possible sum of edge weights.

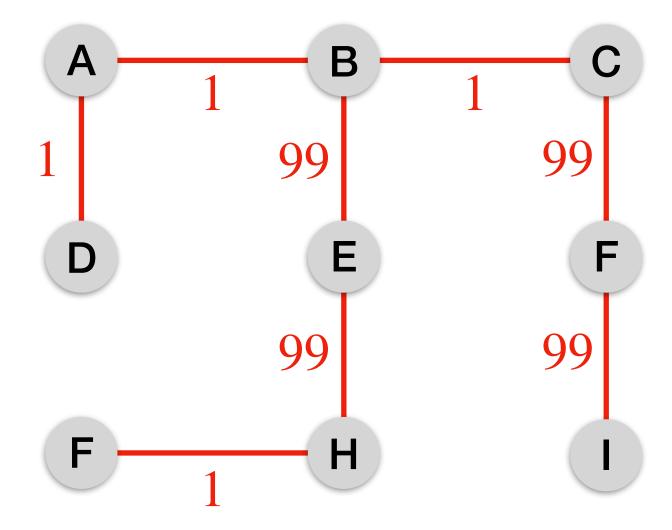
Examples





$$T_1 = (V, E_2)$$



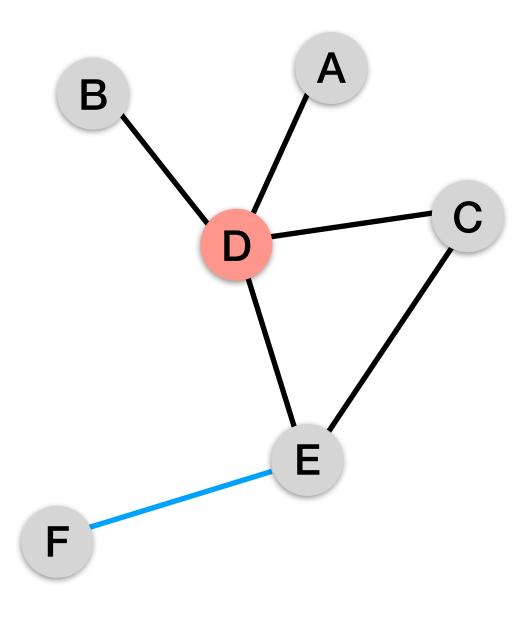


- (*) Both T_1 and T_2 are spanning trees of G.
- (**) T_1 is the unique minimum spanning tree of G of total weight 8.
- (***) G is the so called *grid graph*.

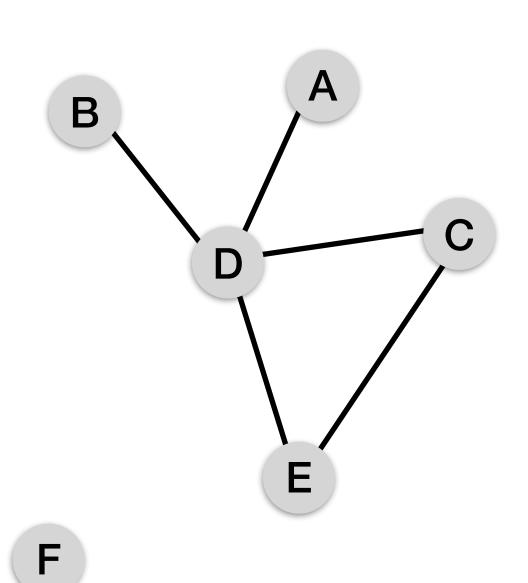
Cut vertices and bridges

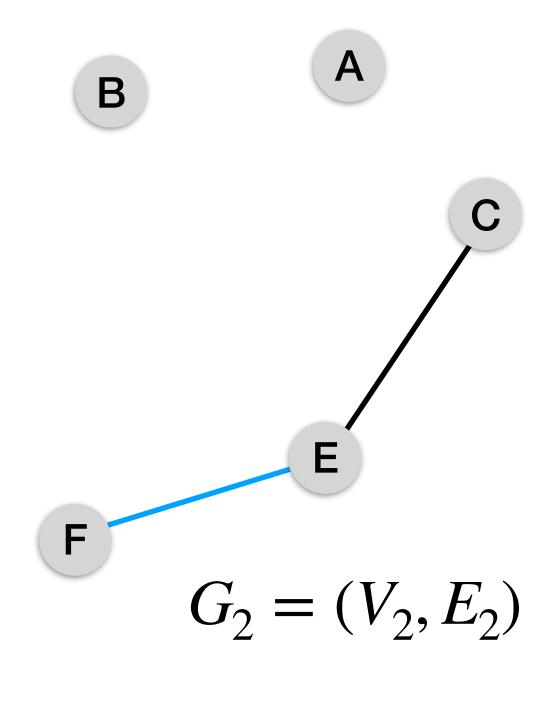
- A cut vertex is any vertex whose removal increases the number of connected components.
- A bridge is any edge whose removal increases the number of connected components.

Examples



$$G = (V, E)$$





- (*) The blue edge is a *bridge*. It's removal increases the number of connected components in G (which is originally one) to two (see graph G_1).
- (**) The reddish vertex is a *cut vertex*. It's removal increases the number of connected components in G (which is originally one) to three (see in graph G_2).

 $G_1 = (V, E_1)$

(***) Note there are multiple cut vertices and bridges in G. The vertex C is not a cut vertex and the edge $\{E,C\}$ is not a bridge.

BFS-VISIT-ITERATIVE(G, v)

- $\begin{array}{c} 1 \ Q \leftarrow \emptyset \\ 2 \ \text{Markie} \end{array}$
- 2 Markiere v als aktiv
- 3 Enqueue(Q, v)
- 4 while $Q \neq \emptyset$ do
- $5 w \leftarrow \text{Dequeue}(Q)$
- 6 Markiere w als besucht
- for each $(w, x) \in E$ do
- 8 if x nicht aktiv und x noch nicht besucht then
- 9 Markiere x als aktiv
- 10 ENQUEUE(Q, x)

AnD Recap

Queue

DFS-VISIT-ITERATIVE(G, v)

 $1 S \leftarrow \emptyset$

Stack


```
2 Push(S, v)

3 while S \neq \emptyset do

4 w \leftarrow \text{Pop}(S)

5 if w noch nicht besucht then

6 Markiere w als besucht

7 for each (w, x) \in E in reverse order do

8 if x noch nicht besucht then

9 Push(S, x)
```

Solving graph exercises?

- Questions that I often received in my AnD exercise classes are
 - How do I solve graph exercises?
 - How rigorous/long should my proof be?
- Of course there is not a single "one size fits all" solution, but what I always tell them is, the more you know about graphs (e.g. properties of a graph, useful lemmas, equivalences...), the better! Let's go through an example.

For any graph G = (V, E) we have: the number of vertices with odd degree is even.

For any graph G = (V, E) we have: the number of vertices with odd degree is even.

Theorem 1.2. For every graph G = (V, E) we have $\sum_{v \in V} \deg(v) = 2 \cdot |E|$.

For any graph G = (V, E) we have: the number of vertices with odd degree is even.

Theorem 1.2. For every graph
$$G = (V, E)$$
 we have $\sum_{v \in V} \deg(v) = 2 \cdot |E|$.

Proof. Let V_e and V_o be the vertex set of the vertices with even and odd degree.

We have
$$\sum_{v \in V} \deg(v) = \sum_{v \in V_e} \deg(v) + \sum_{v \in V_e} \deg(v).$$

The sum of all even degrees is even. The sum of k odd numbers is even if and only if k is even. Using Theorem 1.2. we conclude that $|V_o|$ is even.

Topological sort/ordering

- A topological ordering of a directed graph is a linear ordering of its vertices such that for every directed edge (u, v) from vertex u to vertex v, u comes before v in the ordering.
- A directed acyclic graph (DAG) is a directed graph without directed cycles.
- A topological ordering is only possible if and only if the graph is a DAG.

Example

$$G = (V, E)$$

$$A \downarrow B \downarrow C$$

$$B \downarrow C$$

$$C \downarrow B$$

$$C \downarrow C$$

A, B, C, D, E, F, G, H

Н