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Math notation and terminology 

• , , 


• logarithm to the base , logarithm to the base 


• cardinality of  (number of elements in )


•  (power set of )


•  (the set of subsets of  of cardinality )

ℕ = {1,2,3,…} ℕ0 = {0,1,2,3,…} [n] = {1,2,3,…, n}

ln e log 2

|X | X X

2X = {Y ∣ Y ⊆ X} X

(X
k) = {Y ∣ Y ⊆ X, |Y | = k} X k

2

siehe Skript.
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Examples
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[3] = {1,2,3} X = {1,2}

|X | = 2

2X = {∅, {1}, {2}, {1,2}}

A = {1,2,3,4}

(A
2) = {{1,2}, {2,3}, {3,4}, {1,3}, {1,4}, {2,4}}

(*) The notation  also denotes the binomial coefficient, where  is not a set but an integer. (A
k) A
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Graph notation and terminology 

• , , …


•  (Nachbarschaft von  in )


•  (induced subgraph with vertex set  and edges of  that 
have both endpoints in )


•  (number of edges: in/- for 
“eingehend”, out/+ for “ausgehend”)

G = (V, E) |V | |E |

NG(v) := {u ∈ V ∣ {u, v} ∈ E} v G

G[X], X ⊆ V X E
X

deg(v), degin(v), degout(v), deg−(v), deg+(v)

4

(*) We often shorten  to  when it’s clear what graph  is meant.NG(v) N(v) G
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Examples
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X = {C, E, F, G, H}

C

E F

HG

G[X]

NG(C) = {A, G, H}

deg(F) = 2

X Y

Z

deg+(X) = degout(X) = 1
deg−(X) = degin(X) = 0

B
C

D
E F

J

HG

I

G = (V, E) A
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Notation and terminology 

• A sequence of vertices , such that  and  are 
connected by an edge


• Is a walk (Weg) of length .


• Is a closed walk (geschlossener Weg), if .


• Is a path (Pfad), if all vertices are distinct.


• Is a cycle (Kreis), if all vertices are distinct and .

< v1, v2, …, vk > vi vi+1

k − 1

v1 = vk

v1 = vk

6
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Important graphs 

•  denotes the complete graph on  vertices, where every pair of different 
vertices is connected by an edge.


•  denotes the cycle graph on  vertices.


•  denotes the path graph on  vertices.

Kn n

Cn n

Pn n

7
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Examples
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K5 A

B C

ED
C5 A

B C

ED

A

B

C

P3
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Bipartite graphs 

• A bipartite graph is a graph whose vertices can be divided into two disjoint 
sets  and  such that every edge connects a vertex in  to one in . 


• We usually write  for a bipartite graph .

U V U V

G = (U ⊎ V, E) G

9

(*) disjoint simply means that 

(**) the symbol  is often used to denote a disjoint union of sets, i.e.  such that 

U ∩ V = ∅
⊎ U ∪ V U ∩ V = ∅
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Example
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G = (U ⊎ V, E)

A B C

D E F

U

V

G̃ = (U ⊎ V, Ẽ)

A B C

D E F

U

V

(*) A bipartite graph must not be connected, hence  is also bipartite.G̃
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Bipartite?
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A B C

D E F

A B C

D E F

A B C

D E F
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Bipartite?
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A

B

C

D

E

F

A B C

D E F

A

B

C

D

E

F

not bipartite bipartite

(*) The left graph contains an odd-length cycle . A bipartite graph cannot contain any odd-length cycles! 

(**) Proof left as an exercise (or click here).

< B, E, F >

bipartite

(1) (2) (3)

https://math.stackexchange.com/questions/311665/proof-a-graph-is-bipartite-if-and-only-if-it-contains-no-odd-cycles
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Trees 

A tree is an undirected graph  that satisfies any of the following equivalent 
conditions:


•  is connected and acyclic.


•  is acyclic and a simple cycle is formed if any edge is added.


•  is connected and has  vertices.


•  is connected, but would be disconnected if single edge is removed.


• Any two vertices in  can be connected by a unique path.

G

G

G

G n − 1

G

G
13(*) for the third bullet point we assume that  has a finite amount of vertices.G
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Examples I
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D

B A

E

C

F

T1 = (V, E)
T2 = (V, E)

D

B

A

E

C

F D

B A

E

C

G = (V, E)

D

F

(*)  and  are trees,  is a binary tree since any node has at most two children.

(**)  is not a tree since (1) it has a cycle (2) it has  edges (instead of ) (3) it would not be disconnected 


if the red edge were to be removed (4)  and  are connected by two paths.

T1 T2 T2
G n = 6 n − 1 = 5

D F
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T1 = (V, E)

D

B

A

E

C

F D

T2 = (V, E)

B

A

C D E F

(*) Students sometimes think of only binary trees (e.g. ) when reasoning about trees. However,  is a tree as well!T1 T2
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Trees, connected components and forests 

• A leaf is a vertex in a tree of degree one.


• A connected component of an undirected graph is a connected subgraph that 
is not part of any larger connected subgraph. The connected components of 
any graph partition its vertices into disjoint sets.


• A forest is an undirected and acyclic graph whose connected components are 
trees. In other words, it consists of a disjoint union of trees.

16
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Examples
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(*)  is a forest. The three connected components of  are in red blobs, each of the graphs

contained in one of the red blobs is a tree.


(**) The subgraph on the vertices  is a tree, and both  and  is a leaf.

F F

{C, D, F} F D

B

E

G

A

C
D

F

H I

J K

F = (V, E)
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Spanning trees 

• A spanning tree  of an undirected graph  is a subgraph that is a tree which 
includes all the vertices of .


• A minimum spanning tree (MST) is a spanning tree with the minimum possible 
sum of edge weights.

T G
G

18
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G = (V, E)

A B C

D E F

F H I

1

1

1 1

11

1 1
99

99 99

99

T1 = (V, E2)

A B C

D E F

F H I

1

1

1 1

11

1 1

1

A B C

D E F

F H I

1
1 1

99

99 99

99

T2 = (V, E2)
(*) Both  and  are spanning trees of .

(**)  is the unique minimum spanning tree of G of total weight .

(***)  is the so called grid graph.

T1 T2 G
T1 8
G
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Cut vertices and bridges 

• A cut vertex is any vertex whose removal increases the number of connected 
components.


• A bridge is any edge whose removal increases the number of connected 
components.

20
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D

B A

E

C

F

G = (V, E)

B A

E

C

F
G2 = (V2, E2)

D

B A

E

C

F
G1 = (V, E1)

(*) The blue edge is a bridge. It’s removal increases the number of connected components in  (which is originally one) to two (see graph ).

(**) The reddish vertex is a cut vertex. It’s removal increases the number of connected components in  (which is originally one) to three (see in graph ).

(***) Note there are multiple cut vertices and bridges in . The vertex  is not a cut vertex and the edge  is not a bridge.

G G1
G G2

G C {E, C}
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AnD Recap
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Queue

Stack
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Solving graph exercises?

• Questions that I often received in my AnD exercise classes are


• How do I solve graph exercises?


• How rigorous/long should my proof be?


• Of course there is not a single “one size fits all” solution, but what I always tell 
them is, the more you know about graphs (e.g. properties of a graph, useful 
lemmas, equivalences…), the better! Let’s go through an example.

23
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For any graph  we have: the number of vertices with odd degree is 
even. 

G = (V, E)



Georg Hasebe 25

Theorem 1.2. For every graph  we have .G = (V, E) ∑
v∈V

deg(v) = 2 ⋅ |E |

(*) knowing Theorem 1.2. things get a lot easier!

For any graph  we have: the number of vertices with odd degree is 
even. 

G = (V, E)
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Theorem 1.2. For every graph  we have .G = (V, E) ∑
v∈V

deg(v) = 2 ⋅ |E |

For any graph  we have: the number of vertices with odd degree is 
even. 

G = (V, E)

Proof. Let  and  be the vertex set of the vertices with even and odd 
degree. 


We have .


The sum of all even degrees is even. The sum of  odd numbers is even if and 
only if  is even. Using Theorem 1.2. we conclude that  is even.

Ve Vo

∑
v∈V

deg(v) = ∑
v∈Ve

deg(v) + ∑
v∈Vo

deg(v)

k
k |Vo |

(*) the first gray box is corollary 1.3. in the script.



Georg Hasebe

Algorithms and Data Structures Recap

Topological sort/ordering 

• A topological ordering of a directed graph is a linear ordering of its vertices 
such that for every directed edge  from vertex  to vertex ,  comes 
before  in the ordering.


• A directed acyclic graph (DAG) is a directed graph without directed cycles.


• A topological ordering is only possible if and only if the graph is a DAG.

(u, v) u v u
v

27
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G = (V, E)

A B C

D E

F G H

A, B, C, D, E, F, G, H

(*) note that  has many topological orderings. Another one is .G C, A, B, E, D, F, G, H


