
2025/02/20 — Georg Hasebe

Algorithm and Data Structures Recap

Georg Hasebe

Algorithms and Data Structures Recap

Math notation and terminology

• , ,

• logarithm to the base , logarithm to the base

• cardinality of (number of elements in)

• (power set of)

• (the set of subsets of of cardinality)

ℕ = {1,2,3,…} ℕ0 = {0,1,2,3,…} [n] = {1,2,3,…, n}

ln e log 2

|X | X X

2X = {Y ∣ Y ⊆ X} X

(X
k) = {Y ∣ Y ⊆ X, |Y | = k} X k

2

siehe Skript.

Georg Hasebe

Examples

3

[3] = {1,2,3} X = {1,2}

|X | = 2

2X = {∅, {1}, {2}, {1,2}}

A = {1,2,3,4}

(A
2) = {{1,2}, {2,3}, {3,4}, {1,3}, {1,4}, {2,4}}

(*) The notation also denotes the binomial coefficient, where is not a set but an integer. (A
k) A

Georg Hasebe

Algorithms and Data Structures Recap

Graph notation and terminology

• , , …

• (Nachbarschaft von in)

• (induced subgraph with vertex set and edges of that
have both endpoints in)

• (number of edges: in/- for
“eingehend”, out/+ for “ausgehend”)

G = (V, E) |V | |E |

NG(v) := {u ∈ V ∣ {u, v} ∈ E} v G

G[X], X ⊆ V X E
X

deg(v), degin(v), degout(v), deg−(v), deg+(v)

4

(*) We often shorten to when it’s clear what graph is meant.NG(v) N(v) G

Georg Hasebe

Examples

5

X = {C, E, F, G, H}

C

E F

HG

G[X]

NG(C) = {A, G, H}

deg(F) = 2

X Y

Z

deg+(X) = degout(X) = 1
deg−(X) = degin(X) = 0

B
C

D
E F

J

HG

I

G = (V, E) A

Georg Hasebe

Algorithms and Data Structures Recap

Notation and terminology

• A sequence of vertices , such that and are
connected by an edge

• Is a walk (Weg) of length .

• Is a closed walk (geschlossener Weg), if .

• Is a path (Pfad), if all vertices are distinct.

• Is a cycle (Kreis), if all vertices are distinct and .

< v1, v2, …, vk > vi vi+1

k − 1

v1 = vk

v1 = vk

6

Georg Hasebe

Algorithms and Data Structures Recap

Important graphs

• denotes the complete graph on vertices, where every pair of different
vertices is connected by an edge.

• denotes the cycle graph on vertices.

• denotes the path graph on vertices.

Kn n

Cn n

Pn n

7

Georg Hasebe

Examples

8

K5 A

B C

ED
C5 A

B C

ED

A

B

C

P3

Georg Hasebe

Algorithms and Data Structures Recap

Bipartite graphs

• A bipartite graph is a graph whose vertices can be divided into two disjoint
sets and such that every edge connects a vertex in to one in .

• We usually write for a bipartite graph .

U V U V

G = (U ⊎ V, E) G

9

(*) disjoint simply means that

(**) the symbol is often used to denote a disjoint union of sets, i.e. such that

U ∩ V = ∅
⊎ U ∪ V U ∩ V = ∅

Georg Hasebe

Example

10

G = (U ⊎ V, E)

A B C

D E F

U

V

G̃ = (U ⊎ V, Ẽ)

A B C

D E F

U

V

(*) A bipartite graph must not be connected, hence is also bipartite.G̃

Georg Hasebe

Bipartite?

11

A B C

D E F

A B C

D E F

A B C

D E F

Georg Hasebe

Bipartite?

12

A

B

C

D

E

F

A B C

D E F

A

B

C

D

E

F

not bipartite bipartite

(*) The left graph contains an odd-length cycle . A bipartite graph cannot contain any odd-length cycles!

(**) Proof left as an exercise (or click here).

< B, E, F >

bipartite

(1) (2) (3)

https://math.stackexchange.com/questions/311665/proof-a-graph-is-bipartite-if-and-only-if-it-contains-no-odd-cycles

Georg Hasebe

Algorithms and Data Structures Recap

Trees

A tree is an undirected graph that satisfies any of the following equivalent
conditions:

• is connected and acyclic.

• is acyclic and a simple cycle is formed if any edge is added.

• is connected and has vertices.

• is connected, but would be disconnected if single edge is removed.

• Any two vertices in can be connected by a unique path.

G

G

G

G n − 1

G

G
13(*) for the third bullet point we assume that has a finite amount of vertices.G

Georg Hasebe

Examples I

14

D

B A

E

C

F

T1 = (V, E)
T2 = (V, E)

D

B

A

E

C

F D

B A

E

C

G = (V, E)

D

F

(*) and are trees, is a binary tree since any node has at most two children.

(**) is not a tree since (1) it has a cycle (2) it has edges (instead of) (3) it would not be disconnected

if the red edge were to be removed (4) and are connected by two paths.

T1 T2 T2
G n = 6 n − 1 = 5

D F

Georg Hasebe

Examples II

15

T1 = (V, E)

D

B

A

E

C

F D

T2 = (V, E)

B

A

C D E F

(*) Students sometimes think of only binary trees (e.g.) when reasoning about trees. However, is a tree as well!T1 T2

Georg Hasebe

Algorithms and Data Structures Recap

Trees, connected components and forests

• A leaf is a vertex in a tree of degree one.

• A connected component of an undirected graph is a connected subgraph that
is not part of any larger connected subgraph. The connected components of
any graph partition its vertices into disjoint sets.

• A forest is an undirected and acyclic graph whose connected components are
trees. In other words, it consists of a disjoint union of trees.

16

Georg Hasebe

Examples

17

(*) is a forest. The three connected components of are in red blobs, each of the graphs

contained in one of the red blobs is a tree.

(**) The subgraph on the vertices is a tree, and both and is a leaf.

F F

{C, D, F} F D

B

E

G

A

C
D

F

H I

J K

F = (V, E)

Georg Hasebe

Algorithms and Data Structures Recap

Spanning trees

• A spanning tree of an undirected graph is a subgraph that is a tree which
includes all the vertices of .

• A minimum spanning tree (MST) is a spanning tree with the minimum possible
sum of edge weights.

T G
G

18

Georg Hasebe

Examples

19

G = (V, E)

A B C

D E F

F H I

1

1

1 1

11

1 1
99

99 99

99

T1 = (V, E2)

A B C

D E F

F H I

1

1

1 1

11

1 1

1

A B C

D E F

F H I

1
1 1

99

99 99

99

T2 = (V, E2)
(*) Both and are spanning trees of .

(**) is the unique minimum spanning tree of G of total weight .

(***) is the so called grid graph.

T1 T2 G
T1 8
G

Georg Hasebe

Algorithms and Data Structures Recap

Cut vertices and bridges

• A cut vertex is any vertex whose removal increases the number of connected
components.

• A bridge is any edge whose removal increases the number of connected
components.

20

Georg Hasebe

Examples

21

D

B A

E

C

F

G = (V, E)

B A

E

C

F
G2 = (V2, E2)

D

B A

E

C

F
G1 = (V, E1)

(*) The blue edge is a bridge. It’s removal increases the number of connected components in (which is originally one) to two (see graph).

(**) The reddish vertex is a cut vertex. It’s removal increases the number of connected components in (which is originally one) to three (see in graph).

(***) Note there are multiple cut vertices and bridges in . The vertex is not a cut vertex and the edge is not a bridge.

G G1
G G2

G C {E, C}

Georg Hasebe

AnD Recap

22

Queue

Stack

Georg Hasebe

Solving graph exercises?

• Questions that I often received in my AnD exercise classes are

• How do I solve graph exercises?

• How rigorous/long should my proof be?

• Of course there is not a single “one size fits all” solution, but what I always tell
them is, the more you know about graphs (e.g. properties of a graph, useful
lemmas, equivalences…), the better! Let’s go through an example.

23

Georg Hasebe 24

For any graph we have: the number of vertices with odd degree is
even.

G = (V, E)

Georg Hasebe 25

Theorem 1.2. For every graph we have .G = (V, E) ∑
v∈V

deg(v) = 2 ⋅ |E |

(*) knowing Theorem 1.2. things get a lot easier!

For any graph we have: the number of vertices with odd degree is
even.

G = (V, E)

Georg Hasebe 26

Theorem 1.2. For every graph we have .G = (V, E) ∑
v∈V

deg(v) = 2 ⋅ |E |

For any graph we have: the number of vertices with odd degree is
even.

G = (V, E)

Proof. Let and be the vertex set of the vertices with even and odd
degree.

We have .

The sum of all even degrees is even. The sum of odd numbers is even if and
only if is even. Using Theorem 1.2. we conclude that is even.

Ve Vo

∑
v∈V

deg(v) = ∑
v∈Ve

deg(v) + ∑
v∈Vo

deg(v)

k
k |Vo |

(*) the first gray box is corollary 1.3. in the script.

Georg Hasebe

Algorithms and Data Structures Recap

Topological sort/ordering

• A topological ordering of a directed graph is a linear ordering of its vertices
such that for every directed edge from vertex to vertex , comes
before in the ordering.

• A directed acyclic graph (DAG) is a directed graph without directed cycles.

• A topological ordering is only possible if and only if the graph is a DAG.

(u, v) u v u
v

27

Georg Hasebe

Example

28

G = (V, E)

A B C

D E

F G H

A, B, C, D, E, F, G, H

(*) note that has many topological orderings. Another one is .G C, A, B, E, D, F, G, H

