Familie X hat zwei Kinder

 $\Omega = \{mm, mw, wm, ww\}$

12::

1.Stelle: Geschlecht des älteren Kindes, 2.Stelle: Geschlecht des jüngeren Kindes

$Pr["beide\ Kinder\ sind\ M\"{adchen"}] \Big(\omega , \omega \Big)$	= 1/4
$(\omega, \omega)_{\Gamma}(\omega)$ Pr["beide Kinder sind Mädchen" I "ein Kind ist Mädchen"]	= 1/3
Pr["beide Kinder sind Mädchen" I "älteres Kind ist Mädchen" ((,,)	"] = 1/2

Beispiel 1.30. Eine Urne enthält gleich viele gewöhnliche wie gezinkte Würfel. Bei den gezinkten Würfeln ist die 6 durch eine 7 ersetzt. Man zieht zufällig einen Würfel und würfelt damit.

Wie hoch ist die Wahrscheinlichkeit, dass die gewürfelte Zahl gerade ist?

Sei $Z=\{$ gezogener Würfel ist gezinkt $\}$ und $G=\{$ gewürfelte Zahl ist gerade $\}$. Dann ist $\mathbb{P}[Z]=\mathbb{P}[Z^{\complement}]=\frac{1}{2}$ und

$$\mathbb{P}[G \mid Z] = \frac{|\{2,4\}|}{|\{1,2,3,4,5,7\}|} = \frac{1}{3}.$$

Mit dem Satz von der totalen Wahrscheinlichkeit erhalten wir also

$$\begin{split} \mathbb{P}[G] &= \mathbb{P}[G \mid Z] \, \mathbb{P}[Z] + \mathbb{P}[G \mid Z^{\complement}] \, \mathbb{P}[Z^{\complement}] \\ &= \frac{1}{3} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{5}{12} \, . \end{split}$$