Jeder Graph auf n Knoten ist n-färbbar.

TRUE

Definition 1.56. Eine (Knoten-)Färbung (engl. (vertex) colouring) eines Graphen G = (V, E) mit k Farben ist eine Abbildung $c: V \rightarrow [k]$, sodass gilt

 $c(u) \neq c(v)$ für alle Kanten $\{u,v\} \in E$.

Let k = n = |V|.

Since |V| = |[n]| = n we just choose a unique color for every $v \in V$.

Für das metrische TSP-Problem gibt es einen 2-Approximationsalgorithmus, aber keinen 4-Approximationsalgorithmus

FALSE

$$\sum_{e \in C} \ell(e) \leq \underbrace{\alpha \cdot \mathsf{opt}(K_n, \ell)}_{\mathcal{I}}. \quad \leqslant \ \text{$4 \cdot \mathsf{opt}(k_n, \ell)$.}$$

TRUE

Let e= {u,v} & E, not in a spanning tree T of a. Since T is a tree, u and or are connected by a unique simple path P in T (Sate 1.6 (e)).

After removing e, P is still in and u, or remain connected....

Sei G ein 3-färbbarer Graph. Dann können wir für jeden Knoten $v \in V$ den induzierten Graphen auf der Nachbarschaft von v, G[N(v)], mit zwei Farben färben.

TRUE

Proof by contradiction.

Assume a(N(v)) can only be adored in

 $k \geq 3$ colors. By definition of a

coloring, c(v) = c(w) + we N(w) thus

 $k \ge 4 = 3 + 1$ & 4 is 3 colorable.

Angenommen, G ist ein Graph, der eine Eulertour enthält, und die Anzahl Knoten von G ist gerade. Dann enthält G ein perfektes Matching.

FAISE

consider any bipirtite graph knin+2k where

 $n = 2\ell$ $\ell_1 \ell_2 \in \mathbb{N}_{\geq 1}$.

e.g. l= k=1

$$deg_A(v) = |G| = 2l + 2h$$
 for A

but no perfect matching.

FALSE

Satz 1.40 (Dirac). Wenn G = (V, E) ein Graph mit |V| > 3 Knoten ist, in dem jeder Knoten mindestens |V|/2 Nachbarn hat, dann ist G hamiltonsch.

SCa) > IVI/2 => a contains Hamiltonian cycle.

counterexample: any Cr, nEIN>3

FALSE

$$\rho$$
 has length $1 < 2 = IMI/2$

Geben Sie eine bestmögliche obere Schranke auf die Kosten eines minimalen Spannbaums in G.

9

let Copt be a optimal TSP-route in a with cost 10.

Copt - 2 for any e in E(Copt) is a spanning tree of a since Copt - e is a path (connected, no cycles => tree) that contains all vertices of G (=> spanning). cost of edge is at least 1

=> 9 is best upper bound (since cost of e could be higher than 1)

Für einen bipartiten Graphen $G = (A \uplus B, E)$ gilt genau dann $|N(X)| \ge |X|$ für alle $X \subseteq A$, wenn es ein Matching M der Kardinalität |M| = |A| gibt.

TRUE

Satz 1.52 (Satz von Hall, Heiratssatz). Für einen bipartiten Graphen $G=(A\uplus B,E)$ gibt es genau dann ein Matching M der Kardinalität |M|=|A|, wenn gilt

$$|N(X)| \ge |X|$$
 für alle $X \subseteq A$. (1.1)

Sei G ein zusammenhängender Graph, und sei v ein Knoten in G mit $deg(v) < \Delta(G)$.

Der Greedy-Colouring Algorithmus benötigt höchstens $\Delta(G)$ Farben um G zu färben, wenn er für eine Knotenreihenfolge angewendet wird, in der ν als **erstes** gefärbt wird.

FALSE

Beispiel 1.62. Sei G=(V,E) ein zusammenhängender Graph mit Maximalgrad $\Delta(G)$. Weiter nehmen wir an, dass es einen Knoten $v\in V$ gibt mit $\deg(v)<\Delta(G)$. Wenn wir jetzt eine Breiten- oder Tiefensuche in v starten und die Knoten in umgekehrter Reihenfolge nummerieren, wie sie vom Algorithmus durchlaufen werden (der Knoten v ist also der

un=v j.e. last

Jeder Baum ist bipartit.

TRUE

Let u be root of
$$a$$
, a tree.

There is a unique simple u-v path for all $v \in V$ ($Sett 1.6$ (e)).

Let P_{U} be the path from u to v and let $f(v)$ be the length of P_{U} ($f(u):=0$).

For every edge $e = \{x,y\}$ we have $f(x) \neq 1$ ($f(y)$ (they differ in parity) ($f(y)$).

Set $f(x)$ to be $f(x)$ mod 2 then

 $f(x) = 1$ ($f(x)$) to $f(x)$ and $f(x)$ then