
Georg Hasebe — 14/03/2024

Algorithms and Probability
Week 4

Peergrading

Georg Hasebe 5

Georg Hasebe

Kruskal to find MST in .

Sort edges by weight (ascending):

{A,D},{A,B},{C,G},{B,C},{E,F},{F,G},{D,E},{B,G},{B,D}

Pick edge if no path present in .

We get: {A,D},{A,B},{C,G},{B,C},{E,F},{F,G}

T G

e = {u, v} u − v T

6

Georg Hasebe

• We double all edges in to get .

• Every vertex in has degree and is thus even.

• Satz 1.31 => has a Eulertour, that traverses each edge
exactly once and thus every vertex at least once. It has
Weight as desired.

T T′￼

T′￼ 2 ⋅ degT(v)

T′￼

2 ⋅ ∑
e∈T

l(e) = 2 ⋅ C

7

Georg Hasebe

Let be some arbitrary Zyklus that fulfills the properties and let
be the set of edges in (no duplicates).

As long as there exists a cycle with edges in remove one edge
from that said cycle.

 are the remaining edges.

 is connected and spanning, since removing an edge
from a cycle doesn’t disconnect. is a spanning tree.

We have , since (MST!).

Z EZ
Z

EZ

E′￼Z ⊆ EZ

G′￼ = (V, E′￼Z)
G′￼

C ≤ ∑
e∈E′￼Z

l(e) ≤ ∑
e∈EZ

l(e) = l(Z) C = l(T)

8

Theory Recap

Georg Hasebe

3/2-approximation-algorithm for metric TSP

Input: complete graph , metric edge weight function .

1. Determine MST in .

2. Determine perfect matching of minimum weight on the vertices of odd
degree in . Add matching to , i.e. let (possibly multigraph).

3. Find Eulerian circuit in .

4. Shorten .

G l

T G

M
T M T T′￼ = T ∪ M

E T′￼

E

11

Step 2. is different from the 2-approximation.

Georg Hasebe 12

K6 T

 contains the vertices of odd degree in .S T

T′￼

 is a perfect matching on the vertices of .

(Corollary 1.3 implies is even)

M S
|S |

M

T

 is a MST in .T K6

C

 is a Hamiltonian cycle s.t. C l(C) ≤ 3/2 ⋅ l(Copt) .

E

 is a Eulerian tour in .

(All vertices in have even degree)

E K6
T′￼

T′￼

Georg Hasebe

Notice that . We know .

If we show then as desired.

l(C) ≤ l(M) + l(T) l(T) ≤ l(Copt)

l(M) ≤ 1/2 ⋅ l(Copt) l(C) ≤ 3/2 ⋅ l(Copt)

13

edges in matching .M

edges in MST .T

edges in Eulerian tour .E

E

Since only uses edges from and or edges
that were chosen by shortening , by the triangle

inequality we get .

C M T
E

l(C) ≤ l(M) + l(T)

C

Georg Hasebe

The vertices of odd degree (of) in partition in paths.

Shorten each path to one edge to get with (triangle ineq.).

 (each matching is of size), one must have .

By definition of this yields .

T S Copt |S |

CS l(CS) ≤ l(Copt)

CS = M1 ∪ M2 |S | /2 ≤ 1/2 ⋅ l(CS)

M l(M) ≤ 1/2 ⋅ l(CS) ≤ 1/2 ⋅ l(Copt)

14

4 vertices have odd degree.
 contains every ,

therefore also the vertices in .
Copt v ∈ V

S

 is one of paths.P |S |

P

One matching must be the
 since ≤ 1/2 ⋅ l(CS)

l(M1) + l(M2) ≤ l(CS)

 shortened paths form
.

|S |
CS = M1 ∪ M2

M1

M1

Georg Hasebe

Coloring

15

u v

Two adjacent nodes cannot be colored in the same color.

Georg Hasebe

Coloring

16

Georg Hasebe

Coloring

17

Example: 2-partite (bipartite)

A vertex from can’t be connected to a vertex in .

A vertex of color can’t be connected to a vertex of color .

A B
c1 c2

A

B

Georg Hasebe

Coloring

18

Georg Hasebe

Greedy coloring

19

Georg Hasebe 20

3
2

4
5 6

10

87

9

1

c[] ← min{k ∈ ℕ ∣ k ≠ c(u) for all u ∈ N(v2) ∩ {v1}}2

{ }12

Georg Hasebe 21

3
2

4
5 6

10

87

9

1

2 { }1

c[] ← min{k ∈ ℕ ∣ k ≠ c(u) for all u ∈ N(v2) ∩ {v1}}2

c[] ← min{k ∈ ℕ ∣ k ≠ c(u) for all u ∈ N(v3) ∩ {v1}}3

{ }13

Georg Hasebe 22

3
2

4
5 6

10

87

9

1

3

2 4

5

6

10

8

7

9

1

2

3

{ }1

c[] ← min{k ∈ ℕ ∣ k ≠ c(u) for all u ∈ N(v2) ∩ {v1}}2

{ }1

c[] ← min{k ∈ ℕ ∣ k ≠ c(u) for all u ∈ N(v3) ∩ {v1}}3

c[] ← min{k ∈ ℕ ∣ k ≠ c(u) for all u ∈ N(v10) ∩ {v1, …, v9}}10

4 98{ , , }

⋮

10

Georg Hasebe

Result

23

Where denotes the

highest degree of any vertex in .

Δ(G) := max
v∈V

deg(v)

V

Georg Hasebe

Proof

Worst case?

All neighbors of already colored, then colors needed. Hence at
most colors are needed.

Runtime: array . Go over neighbors of
and set . Go over and set color to index of first false entry.

Coloring takes : the algorithm runs in .

v deg(v) + 1
Δ(G) + 1

A[deg(v) + 1] = [false, …, false] ni v
A[c(ni)] = true A

v O(deg(v)) O(∑
v∈V

deg(v)) = O(|E |)

24
Theorem 1.2.

Georg Hasebe

Remarks

• How many colors the greedy algorithm uses depends on the sequence of
vertices.

• There always exists a sequence such that the algorithm needs colors.χ(G)

25

Georg Hasebe

Exercise

26

c

f

a

d

b

e

B3
c

f

a

d

b

e

[a,d,b,e,c,f]

c

f

a

d

b

e

[a,b,c,d,e,f]

sequence

Georg Hasebe

Coloring

We want to minimize .

The bigger gets, the bigger becomes.

Have where is small, at the end of the sequence.

|N(vi) ∩ {v1, …, vi−1} |∀2 ≤ i ≤ n

i |{v1, …, vi−1} |

vi |N(vi) |

27

Georg Hasebe

Coloring

28

Georg Hasebe

Coloring

29

Georg Hasebe

Proof

Let s.t. .

Start BFS/DFS in .

The sequence for the greedy algorithm is the reverse order of how we
traversed the vertices in (i.e.).

Then every , has at least one uncolored neighbor where and thus
at most colored neighbors.

We started in with , then and has at most
colored neighbors. Greedy algorithm needs at most colors.

v ∈ V deg(v) < Δ(G)

v

G v = vn

vi i < n vj j > i
Δ(G) − 1

v deg(v) < Δ(G) vn = v vn Δ(G) − 1
Δ(G)

30

Georg Hasebe

Recommendation

31

Skript p. 80

We just solved Bsp. 1.6.2.

Georg Hasebe

Coloring

32

Georg Hasebe

Proof

Observation: for all , the induced subgraph can be colored
using two colors and is therefore bipartite. We can color using BFS.

Idea: color vertices with large degree and their neighbors with 3 colors. If there
is no vertex with large degree anymore, color the rest.

What is considered large degree? We will see: .

v ∈ V G[N(v)]
G[N(v)]

|V |

33

Georg Hasebe

Proof

34

Each iteration we color at least vertices, thus after at most
iterations we stop (since then vertices are colored).

Each iteration takes 3 new colors: at most colors.

Color the rest (after deletion) with Greedy: at most colors.

In total: colors used.

|V | |V |
|V | ⋅ |V | = |V |

3 ⋅ |V |

Δ + 1 ≤ |V |

O(|V |)

≥

<

