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Kruskal to find MST  in .


Sort edges by weight (ascending):


{A,D},{A,B},{C,G},{B,C},{E,F},{F,G},{D,E},{B,G},{B,D}


Pick edge  if no  path present in .


We get: {A,D},{A,B},{C,G},{B,C},{E,F},{F,G}

T G

e = {u, v} u − v T
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• We double all edges in  to get .


• Every vertex in  has degree  and is thus even.


• Satz 1.31 =>  has a Eulertour, that traverses each edge 
exactly once and thus every vertex at least once. It has 
Weight  as desired.

T T′￼

T′￼ 2 ⋅ degT(v)

T′￼

2 ⋅ ∑
e∈T

l(e) = 2 ⋅ C
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Let  be some arbitrary Zyklus that fulfills the properties and let  
be the set of edges in  (no duplicates).


As long as there exists a cycle with edges in  remove one edge 
from that said cycle.


 are the remaining edges.


 is connected and spanning, since removing an edge 
from a cycle doesn’t disconnect.  is a spanning tree.


We have , since  (MST!). 

Z EZ
Z

EZ

E′￼Z ⊆ EZ

G′￼ = (V, E′￼Z)
G′￼

C ≤ ∑
e∈E′￼Z

l(e) ≤ ∑
e∈EZ

l(e) = l(Z) C = l(T)
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3/2-approximation-algorithm for metric TSP

Input: complete graph , metric edge weight function .


1. Determine MST  in .


2. Determine perfect matching of minimum weight  on the vertices of odd 
degree in . Add matching  to , i.e. let  (possibly multigraph).


3. Find Eulerian circuit  in .


4. Shorten .

G l

T G

M
T M T T′￼ = T ∪ M

E T′￼

E
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Step 2. is different from the 2-approximation.
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K6 T

 contains the vertices of odd degree in .S T

T′￼

 is a perfect matching on the vertices of .

(Corollary 1.3 implies  is even)

M S
|S |

M

T

 is a MST in .T K6

C

 is a Hamiltonian cycle s.t. C l(C) ≤ 3/2 ⋅ l(Copt) .

E

 is a Eulerian tour in .

(All vertices in  have even degree)

E K6
T′￼

T′￼
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Notice that . We know . 


If we show  then  as desired.

l(C) ≤ l(M) + l(T) l(T) ≤ l(Copt)

l(M) ≤ 1/2 ⋅ l(Copt) l(C) ≤ 3/2 ⋅ l(Copt)
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edges in matching .M

edges in MST .T

edges in Eulerian tour .E

E

Since  only uses edges from  and  or edges 
that were chosen by shortening , by the triangle 

inequality we get .

C M T
E

l(C) ≤ l(M) + l(T )

C
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The vertices of odd degree (of ) in  partition  in  paths.


Shorten each path to one edge to get  with  (triangle ineq.).


 (each matching is of size ), one must have  .


By definition of  this yields .

T S Copt |S |

CS l(CS) ≤ l(Copt)

CS = M1 ∪ M2 |S | /2 ≤ 1/2 ⋅ l(CS)

M l(M) ≤ 1/2 ⋅ l(CS) ≤ 1/2 ⋅ l(Copt)
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4 vertices have odd degree.
 contains every , 

therefore also the vertices in .
Copt v ∈ V

S

 is one of  paths.P |S |

P

One matching must be the 
 since ≤ 1/2 ⋅ l(CS)

l(M1) + l(M2) ≤ l(CS)

 shortened paths form 
.

|S |
CS = M1 ∪ M2

M1

M1
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Coloring
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u v

Two adjacent nodes cannot be colored in the same color.
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Coloring
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Coloring
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Example: 2-partite (bipartite)

A vertex from  can’t be connected to a vertex in .

A vertex of color  can’t be connected to a vertex of color .

A B
c1 c2

A

B
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Coloring

18



Georg Hasebe

Greedy coloring
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c[ ] ← min{k ∈ ℕ ∣ k ≠ c(u) for all u ∈ N(v2) ∩ {v1}}2

{ }12
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2 { }1

c[ ] ← min{k ∈ ℕ ∣ k ≠ c(u) for all u ∈ N(v2) ∩ {v1}}2

c[ ] ← min{k ∈ ℕ ∣ k ≠ c(u) for all u ∈ N(v3) ∩ {v1}}3

{ }13
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{ }1

c[ ] ← min{k ∈ ℕ ∣ k ≠ c(u) for all u ∈ N(v2) ∩ {v1}}2

{ }1

c[ ] ← min{k ∈ ℕ ∣ k ≠ c(u) for all u ∈ N(v3) ∩ {v1}}3

c[ ] ← min{k ∈ ℕ ∣ k ≠ c(u) for all u ∈ N(v10) ∩ {v1, …, v9}}10

4 98{ , , }

⋮
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Result
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Where  denotes the 

highest degree of any vertex in . 

Δ(G) := max
v∈V

deg(v)

V
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Proof

Worst case? 

All neighbors of  already colored, then  colors needed. Hence at 
most  colors are needed.


Runtime: array . Go over neighbors  of  
and set . Go over  and set color to index of first false entry.


Coloring  takes : the algorithm runs in .

v deg(v) + 1
Δ(G) + 1

A[deg(v) + 1] = [false, …, false] ni v
A[c(ni)] = true A

v O(deg(v)) O(∑
v∈V

deg(v)) = O( |E | )

24
Theorem 1.2.
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Remarks

• How many colors the greedy algorithm uses depends on the sequence of 
vertices.


• There always exists a sequence such that the algorithm needs  colors.χ(G)
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Exercise
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c

f

a

d

b

e

B3
c

f

a

d

b

e

[a,d,b,e,c,f]

c

f

a

d

b

e

[a,b,c,d,e,f]

sequence
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Coloring

We want to minimize .


The bigger  gets, the bigger  becomes. 


Have  where  is small, at the end of the sequence.

|N(vi) ∩ {v1, …, vi−1} |∀2 ≤ i ≤ n

i |{v1, …, vi−1} |

vi |N(vi) |
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Coloring
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Coloring
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Proof

Let  s.t. .


Start BFS/DFS in .


The sequence for the greedy algorithm is the reverse order of how we 
traversed the vertices in  (i.e. ).


Then every ,  has at least one uncolored neighbor  where  and thus 
at most  colored neighbors.


We started in  with , then  and  has at most  
colored neighbors. Greedy algorithm needs at most  colors.

v ∈ V deg(v) < Δ(G)

v

G v = vn

vi i < n vj j > i
Δ(G) − 1

v deg(v) < Δ(G) vn = v vn Δ(G) − 1
Δ(G)
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Recommendation
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Skript p. 80

We just solved Bsp. 1.6.2.
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Coloring
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Proof

Observation: for all , the induced subgraph  can be colored 
using two colors and is therefore bipartite. We can color  using BFS.


Idea: color vertices with large degree and their neighbors with 3 colors. If there 
is no vertex with large degree anymore, color the rest.


What is considered large degree? We will see: .

v ∈ V G[N(v)]
G[N(v)]

|V |
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Proof
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Each iteration we color at least  vertices, thus after at most  
iterations we stop (since then  vertices are colored).


Each iteration takes 3 new colors: at most   colors.


Color the rest (after deletion) with Greedy: at most  colors.


In total:  colors used.

|V | |V |
|V | ⋅ |V | = |V |

3 ⋅ |V |

Δ + 1 ≤ |V |

O( |V | )

≥

<


