Aufgabe 1 - Zusammenhang

Im Folgenden sei G = (V, E) ein zusammenhängender Graph mit mindestens drei Knoten, d.h. $|V| \geq 3$.

(a) Beweisen Sie folgende Aussage: Wenn deg(v) für alle $v \in V$ eine gerade Zahl ist, dann ist G 2-Kanten-zusammenhängend. Gilt die umgekehrte Implikation ebenfalls? Genauer: Gilt für jeden 2-Kanten-zusammenhängenden Graph G = (V, E), dass für alle $v \in V$ der Grad deg(v)eine gerade Zahl ist?

Contradiction Proof by

Assume a not 2-leaten-zshid. Then there

0×13+5

bridge $e = \{b_1, b_2\}$ s. $\{ . \quad \mathcal{U} - e \}$

not 13

connected

Let dega(w) denote

the degree of

IN

Conn. comp.

 $= \sum_{v \in A} deg_{A}(v) = 2 \cdot e(A)$

where e(A) = # edges in conn. comp. A.

But $Z deg_A(v) = deg_A(b_n) + Z deg_A(v)$ $v \in A \setminus db_n$

> = $(deg_{\alpha}(b_{n}) - 1) + \mathcal{L} deg_{\alpha}(v)$ $v \in A \setminus (b_{n})$

= 2h-1 for kEIN.

Contradiction to theorem 1.2.

a bridge cannot exist.

Aufgabe 1 - Zusammenhang

Im Folgenden sei G = (V, E) ein zusammenhängender Graph mit mindestens drei Knoten, d.h. $|V| \geq 3$.

(a) Beweisen Sie folgende Aussage: Wenn deg(v) für alle $v \in V$ eine gerade Zahl ist, dann ist G 2-Kanten-zusammenhängend. Gilt die umgekehrte Implikation ebenfalls? Genauer: Gilt für jeden 2-Kanten-zusammenhängenden Graph G = (V, E), dass für alle $v \in V$ der Grad deg(v)eine gerade Zahl ist?

Satz 1.31.

Eulerian tour

be arbitrary in V, u + v.

Vo, V1, ..., Vm Let

be a Eulerian

5. +.

 $v_o = v_w = u$.

fhe be

smallest i

(first encounter).

v. ... v. are

Kanten-disjunte

IJ

\$17e

Since uiv veue arbitrary,

۲۱

Kenten - 75hgd.

(2=)?

(4)

3-kanten-2shgd.

but for all uch deglo) is add.

- (b) Beweisen Sie oder widerlegen Sie die folgenden Behauptungen:
 - (i) Falls G einen Hamiltonkreis enthält, so ist G 2-zusammenhängend.

For exbitrary $u, v \in V$, $u \neq v$ define Hamilton cycle $H = \langle v_0 \dots v_n \rangle$, $v_0 = v_n = u$. $P_1 = \langle v_1 \dots v_n \rangle$, $P = \langle v_1 \dots v_n \rangle$ are $f(v_0)$

vertex disjoint paths

Seperator 1s of size 2.

Since uir vere arbitrary, a is 2 75hgd.

(c) Nehmen Sie an, dass G 2-zusammenhängend ist. Sei (u, v, w) ein Pfad der Länge 2 in G. Zeigen Sie, dass wir diesen Pfad zu einem Kreis erweitern können, also, dass G einen Kreis enthält, in dem u, v, w als benachbarte Knoten vorkommen.

 P_1, P_2 are two vertex-disjoint V_1, V_2 paths.

Since V_1, V_2 are vertex-disjoint, only one has V_1 in it. $V_2, v_3, v_4 \in P_2$.

Then V_1 can be extended to a cycle.

