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Matchings
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Each vertex appears in at most one edge, i.e. e ∩ f = ∅ for all e, f ∈ M, e ≠ f
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Matchings
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english: maximal matching

english: maximum matching

english: maximal matching english: maximum matching
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Matchings
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(*) not in the script.
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Proof

First, DiskMath recap.
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(*) not in the script.
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DiskMath Recap

Exclusive or/Exclusive disjunction/Exor :⊕
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True whenever  and  differ.A B
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 for sets:⊕

DiskMath Recap
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A B A B

A ⊕ B = (A ∪ B)∖(A ∩ B)
= (A∖B) ∪ (B∖A)

 if in  or  but not both.x ∈ A ⊕ B A B
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We consider edges from the exclusive disjunction of  and , i.e.
.


(i) Each edge in  can be adjacent to at most two edges in 
.

Mmax Minc
e ∈ Mmax ⊕ Minc = (Mmax∖Minc) ∪ (Minc∖Mmax)

(Minc∖Mmax)
(Mmax∖Minc)

Proof
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e
(Mmax∖Minc)

(Minc∖Mmax)

Clearly, any other edge in  adjacent to  would contradict the fact that  is a matching.(Mmax∖Minc) e Mmax
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We consider edges from the exclusive disjunction of  and , i.e.
.


(i) Each edge in  can be adjacent to at most two edges in 
.


(ii) Each edge in  is adjacent to an edge in .

Mmax Minc
e ∈ Mmax ⊕ Minc = (Mmax∖Minc) ∪ (Minc∖Mmax)

(Minc∖Mmax)
(Mmax∖Minc)

(Mmax∖Minc) (Minc∖Mmax)

Proof

9

(Mmax∖Minc)

(Minc∖Mmax) e

If  was not adjacent to an edge in  , then we could add  to . Contradiction.e (Minc∖Mmax) e Minc



Georg Hasebe

We consider edges from the exclusive disjunction of  and , i.e.
.


(i) Each edge in  can be adjacent to at most two edges in 
.


(ii) Each edge in  is adjacent to an edge in .


(i) + (ii) imply that  which implies .

Mmax Minc
e ∈ Mmax ⊕ Minc = (Mmax∖Minc) ∪ (Minc∖Mmax)

(Minc∖Mmax)
(Mmax∖Minc)

(Mmax∖Minc) (Minc∖Mmax)

|Mmax | ≤ 2 ⋅ |Minc | |Minc | ≥ |Mmax | /2

Proof
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e e

Intuitively: (i) shows that for every edge in  we can have 2 edges in .

 (ii) shows that edges in  can’t occur “by themselves”

Minc Mmax
Mmax

(Mmax∖Minc)

(Minc∖Mmax) (i) (ii)
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This proof also holds for two inklusionsmaximale matchings. This means 
 also holds, since every kardinalitätsmaximale matching 

is also inklusionsmaximal.


Moreover, this shows that any inklusionsmaximale matching is a 2-
approximation of a kardinalitätsmaximale matching and also a 2-approximation 
of a minimum inklusionsmaximale matching.

|Mmax | ≥ |Minc | /2

(*) Remark

11

(*) Not part of the lecture; source

https://en.wikipedia.org/wiki/Matching_(graph_theory)#Properties
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Greedy Matching

Input: Graph 


Initialize empty matching 


Repeat until  is empty:


1. Pick arbitrary edge 


2. Add  to matching 


3. Remove  and all incident edges from 

G = (V, E)

M

E

e in E

e M

e G

12
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v

w

y

x

M

G  empty; stopE

Note that the matching 
 consists only of 

edges, i.e. . The 
vertices were only 
drawn for better 

visualization.

M
M ⊆ E
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Pseudocode
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Result

 is a matching since after picking an edge  we delete all edges 
incident to  and . Thus for all  we have .


 is inklusionsmaximal by construction of the algorithm: it only stops after 
 is empty, meaning there cannot exist a matching  such that  

and .


Now we apply the theorem from before: we get .

MGreedy {v, w}
v w e, f ∈ MGreedy e ∩ f = ∅

MGreedy
E M′￼ MGreedy ⊆ M′￼

|M′￼| > MGreedy

|MGreedy | ≥
1
2

|Mmax |

15
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Augmenting Paths
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Augmentation means “Vergrösserung” in German, so augmenting paths are “Vergrösserungspfade”. 
I think I made this up, but maybe it helps remembering.
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Is there always an augmenting path?
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Proof

Let  be matchings in  such that . Then  
can’t be kardinalitätsmaximal. 


We inspect the graph . Each vertex in  has degree at 
most 2.

M1, M2 G = (V, E) |M1 | < |M2 | M1

GM = (V, M1 ⊕ M2) GM

18

This situation could never occur as  and  are matchings.M1 M2
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Proof

 matchings in , . (  not kardinalitätsmaximal)


. Each vertex in  has degree at most 2.


The connected components of  are paths or cycles.


All the cycles in  are of even length.

M1, M2 G = (V, E) |M1 | < |M2 | M1

GM = (V, M1 ⊕ M2) GM

GM

GM

19

This situation could never occur as  and  are matchings.M1 M2

Follows from the degree being at most 2.
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Proof

 matchings in , . (  not kardinalitätsmaximal)


. Each vertex in  has degree at most 2.


The connected components of of  are paths or cycles.


All the cycles in  are of even length. All paths and cycles of even length 
contain the same amount of edges from  and .


Since , there exists a path  of odd length that contains more 
edges from .  is an augmenting path.

M1, M2 G = (V, E) |M1 | < |M2 | M1

GM = (V, M1 ⊕ M2) GM

GM

GM
M1 M2

|M1 | < |M2 | P
M2 P

20

M2

M1

We can use this path to make  bigger.M1
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M2

M1

G = (V, E)
M′￼ = M2 ⊕ P

Using the augmenting path  we increased 
the size of .

P
M1

This edge was in both  and , meaning 
it can’t be in .

M1 M2
M1 ⊕ M2

GM = (V, M1 ⊕ M2)

P
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Idea

Using the concept of an augmenting path, we can increase the number of 
edges in a matching until it is kardinalitätsmaximal.
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Hopcroft-Karp algorithm

This algorithm relies on the concept of an augmenting path.


By repeatedly finding augmenting paths we can increase the number of edges 
in our matching until it is kardinalitätsmaximal.


But how do we find augmenting paths? 

23
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BFS for finding augmenting paths

Input: bipartite graph , matching 


We use BFS to go from  to  and back, while alternating between edges in  
and .


G = (A ⊎ B, E) M

A B M
E∖M

24
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Pseudocode
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Pseudocode
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d

a

f

c

e

bA

B f

a

d

c

e

b

a cL0
d feL1

a d

Is augmenting path , return .P P
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f

a

d

c

e

bA

B f

a

d

c

e

b

f

a

d

c

e

bcL0
d eL1
a bL2

fL3
c d a f

Is augmenting path , return .P P

f

a

d

c

e

b
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f

a

d

c

e

bA

B

L0 = ∅
No augmenting paths left. By theorem 
1.48 this means that  is a maximum 

matching.
M
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Result

30


