Algorithms and Probability

Week 2

Kreise

Sei G = (V, E) ein Graph.

Hamiltonkreis:

• Ein Kreis in G, der jeden Knoten genau einmal enthält.

Eulertour:

• Ein geschlossener Weg in G, der jede Kante genau einmal enthält.

On finding Hamiltonian cycles

- Finding Hamiltonian cycles is hard (NP-hard)
- The only known algorithms are exponential
- Naive: try out all possibilities for a Hamiltonian cycle.
 - How many? At most (n-1)!/2.

DP Algorithm

Let G = (V, E) be a graph and let $V = [n] = \{1, 2, ..., n\}$.

A path starting at 1 and ending at x (i.e. a 1-x path) containing all vertices of V, where x is a neighbor of 1 (i.e. $x \in N(1)$), can be turned into a Hamiltonian cycle.

DP Algorithm

$$G = (V, E), V = [n] = \{1, 2, ..., n\}.$$

Let $S \subseteq V$ where $1 \in S$. Consider the following notation for all $x \in S$, $x \neq 1$

$$P_{S,x} = \begin{cases} 1, & \text{there exists a } 1\text{-}x \text{ path in } G \text{ that contains all vertices in } S \\ 0, & \text{otherwise.} \end{cases}$$

Now if there exists some $x \in N(1)$ where $P_{[n],x} = 1$, G contains a Hamiltonian cycle.

We can calculate the values for $P_{S,x}$ using dynamic programming.

DP Algorithm

$$G = (V, E), V = [n] = \{1, 2, ..., n\}.$$

Base cases: If $S = \{1,x\}$ for some $x \in V$, then $P_{S,x} = 1$ if $\{1,x\} \in E$.

Recursion:

$$P_{S,x} = \max\{P_{S\setminus\{x\},x'} \mid x' \in S \cap N(x), x' \neq 1\}$$

Hamiltonkreis (G = ([n], E))

- 1: // Initialisierung
- 2: for all $x \in [n]$, $x \neq 1$ do
- 3: $P_{\{1,x\},x} := \begin{cases} 1, & \text{falls } \{1,x\} \in E \\ 0, & \text{sonst} \end{cases}$
- 4: // Rekursion
- 5: for all s = 3 to n do
- 6: for all $S \subseteq [n]$ mit $1 \in S$ und |S| = s do
- 7: for all $x \in S$, $x \neq 1$ do
- 8: $P_{S,x} = \max\{P_{S\setminus\{x\},x'} \mid x' \in S \cap N(x), x' \neq 1\}.$
- 9: // Ausgabe
- 10: if $\exists x \in N(1)$ mit $P_{[n],x} = 1$ then
- 11: return G enthält Hamiltonkreis
- 12: **else**
- 13: return G enthält keinen Hamiltonkreis

Pseudocode

The initialization part covers all subsets of size 2. We therefore start with subsets of size 3 and work our way up to n.

We go through all subsets of size s. If s=n, then the only subset will be [n] itself. Remember, we try to determine $P_{[n],x}$.

We demand that $x \neq 1$, because we started with 1 already.

 $S \setminus \{x\}$ ensures that any path that we extend by x does not contain x.

Here we attempt to "close" a Hamiltonian 1-x path in order to get a Hamiltonian cycle.

Result

Satz 1.34. Algorithmus Hamiltonkreis ist korrekt und benötigt Speicher $O(n \cdot 2^n)$ und Laufzeit $O(n^2 \cdot 2^n)$, wobei n = |V|.

Satz 1.34. Algorithmus Hamiltonkreis ist korrekt und benötigt Speicher $O(n \cdot 2^n)$ und Laufzeit $O(n^2 \cdot 2^n)$, wobei n = |V|.

Proof

Hamiltonkreis (G = ([n], E))

- 1: // Initialisierung
- 2: for all $x \in [n]$, $x \neq 1$ do
- 3: $P_{\{1,x\},x} := \begin{cases} 1, & \text{falls } \{1,x\} \in E \\ 0, & \text{sonst} \end{cases}$
- 4: // Rekursion
- 5: for all s = 3 to n do
- 6: for all $S \subseteq [n]$ mit $1 \in S$ und |S| = s do
- 7: for all $x \in S$, $x \neq 1$ do
- 8: $P_{S,x} = \max\{P_{S\setminus\{x\},x'} \mid x' \in S \cap N(x), x' \neq 1\}.$
- 9: // Ausgabe
- 10: if $\exists x \in N(1) \text{ mit } P_{[n],x} = 1 \text{ then }$
- 11: return G enthält Hamiltonkreis
- 12: **else**
- 13: return G enthält keinen Hamiltonkreis

$$\sum_{s=3}^{n} \sum_{S \subseteq [n], 1 \in S, |S| = s} \sum_{x \in S, x \neq 1} O(???)$$

$$= \sum_{s=3}^{n} \sum_{S \subseteq [n], 1 \in S, |S| = s} \sum_{x \in S, x \neq 1} O(n)$$

$$= \sum_{s=3}^{n} \binom{n-1}{s-1} (s-1)O(n)$$

$$O(n^2 \cdot 2^n)$$
A subset of S' of size $s-1$ from $n-1$ vertices; then $S=S' \cup \{1\}.$

(*) where we used
$$\sum_{s=0}^{n-1} \binom{n-1}{s} = 2^{n-1}$$
.

|S| = s, but we exclude 1.

Traveling salesman problem (TSP)

Given a weighted, complete graph K_n , we want to determine the Hamiltonian cycle of smallest total weight in K_n .

More formally, if l is the edge weight function of K_n , we look for a Hamiltonian cycle C such that

$$\sum_{e \in C} l(e) = \min\{\sum_{e \in C'} | C' \text{ is a Hamiltonian cycle in } K_n\}.$$

Metric TSP

Same as TSP, except the edge weight function l has to have the following property (triangle inequality)

$$l(\{x,z\}) \le l(\{x,y\}) + l(\{y,z\})$$
 for all $x,y,z \in [n]$.

traveling the direct route $\{x, z\}$ is cheaper than $\{x, y\} \rightarrow \{y, z\}$.

Input: complete graph G, metric edge weight function l.

- 1. Determine MST T in G.
- 2. Double all edges in T, call it T' (a multigraph).
- 3. Find Eulerian circuit E in T'.
- 4. Shorten E (we will see what this means).

Input: complete graph G, metric edge weight function l.

Input: complete graph G, metric edge weight function l.

Input: complete graph G, metric edge weight function l.

Input: complete graph G, metric edge weight function l.

Input: complete graph G, metric edge weight function l.

We shorten E by walking along it and skipping vertices we already walked over. In this example we start at ν and walk to the right.

^(*) here we use the fact that the edge weight function fulfills the triangle inequality.

^(**) remember that G is a complete graph, thus making it possible to walk over any edge we get by shortening.

Analysis

Let OPT be the cheapest Hamiltonian cycle. Then $OPT \setminus \{e\}$ is a spanning tree.

$$cost() \xrightarrow{T} \bigvee_{T \text{ is a MST}}) \leq cost(OPT \setminus \{e\}) \leq cost(OPT)$$

$$cost() = 2 \cdot cost() + (-1) = 2 \cdot cost() + (-$$

$$cost() = cost() + (cost(OPT))$$

$$E = Cost() + (cost(OPT))$$

$$cost(\underbrace{H}) \le cost(\underbrace{E}) \le 2 \cdot cost(OPT)$$

l fulfills the triangle inequality, thus by shortening the cost can only get shorter.

Runtime

1. Determine MST T in $G \Longrightarrow O(n^2)$

See theorem 1.19. Remember that G is complete, thus $m = O(n^2)$.

2. Double all edges in T, call it T' (a multigraph) $\Longrightarrow O(m)$

3. Find Eulerian circuit E in $T' \Longrightarrow O(n)$

Theorem 1.31. (b) we can find a Eulerian circuit in O(m). Since T' has 2(n-1) edges we have O(n).

4. Shorten E (we will see what this means) $\Longrightarrow O(n)$

Result

Satz 1.43. Für das Metrische Travelling Salesman Problem gibt es einen 2-Approximationsalgorithmus mit Laufzeit $O(n^2)$.