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On finding Hamiltonian cycles 

• Finding Hamiltonian cycles is hard (NP-hard)


• The only known algorithms are exponential


• Naive: try out all possibilities for a Hamiltonian cycle.


• How many? At most .(n − 1)!/2
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DP Algorithm

Let  be a graph and let .


A path starting at  and ending at  (i.e. a -  path) containing all vertices of , 
where  is a neighbor of  (i.e. ), can be turned into a Hamiltonian 
cycle.

G = (V, E) V = [n] = {1,2,…, n}

1 x 1 x V
x 1 x ∈ N(1)
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1 x
 is neighbor of x 1

P
the path  contains all vertices of P V

adding the edge  to  
gives a Hamiltonian cycle

{1,x} P

G
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DP Algorithm

, .


Let  where . Consider the following notation for all 





Now if there exists some  where ,  contains a Hamiltonian 
cycle.


We can calculate the values for  using dynamic programming.

G = (V, E) V = [n] = {1,2,…, n}

S ⊆ V 1 ∈ S x ∈ S, x ≠ 1

PS,x = {1, there exists a 1-x path in G that contains all vertices in S
0, otherwise.

x ∈ N(1) P[n],x = 1 G

PS,x
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DP Algorithm

, .


Base cases: If  for some , then  if .


Recursion:  

G = (V, E) V = [n] = {1,2,…, n}

S = {1,x} x ∈ V PS,x = 1 {1,x} ∈ E

PS,x = max{PS∖{x},x′￼
∣ x′￼ ∈ S ∩ N(x), x′￼ ≠ 1}
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1 x′￼ x

PS∖{x},x′￼ = 1

x′￼∈ N(x)

1 x′￼ x

PS,x = 1
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Pseudocode
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The initialization part covers all subsets of 
size 2. We therefore start with subsets of 

size 3 and work our way up to .n

We go through all subsets of size . If 
, then the only subset will be  itself. 

Remember, we try to determine .

s
s = n [n]

P[n],x

 ensures that any path that we 
extend by  does not contain .

S∖{x}
x x

We demand that , because we started 
with 1 already.

x ≠ 1

Here we attempt to “close” a 
Hamiltonian  path in order to get a 

Hamiltonian cycle.
1-x
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Result
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Proof










n

∑
s=3

∑
S⊆[n],1∈S,|S|=s

∑
x∈S,x≠1

O(???)

=
n

∑
s=3

∑
S⊆[n],1∈S,|S|=s

∑
x∈S,x≠1

O(n)

=
n

∑
s=3

(n − 1
s − 1)(s − 1)O(n)

≤ O(n2 ⋅ 2n)
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(*) where we used .
n−1

∑
s=0

(n − 1
s ) = 2n−1

, but we exclude .|S | = s 1

A subset of  of size  from 
 vertices; then 

.

S′￼ s − 1
n − 1

S = S′￼∪ {1}



Georg Hasebe

Traveling salesman problem (TSP)

Given a weighted, complete graph , we want to determine the Hamiltonian 
cycle of smallest total weight in .


More formally, if  is the edge weight function of , we look for a Hamiltonian 
cycle  such that


.

Kn
Kn

l Kn
C

∑
e∈C

l(e) = min{ ∑
e∈C′￼

∣ C′￼ is a Hamiltonian cycle in Kn}
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Metric TSP

Same as TSP, except the edge weight function  has to have the following 
property (triangle inequality)


.

l

l({x, z}) ≤ l({x, y}) + l({y, z}) for all x, y, z ∈ [n]
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x

y

z

l({x, y}) + l({y, z})

l({x, z})

traveling the direct route  is cheaper than .{x, z} {x, y} → {y, z}
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2-approximation-algorithm for metric TSP

Input: complete graph , metric edge weight function .


1. Determine MST  in .


2. Double all edges in , call it  (a multigraph).


3. Find Eulerian circuit  in .


4. Shorten  (we will see what this means).

G l

T G

T T′￼

E T′￼

E
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2-approximation-algorithm for metric TSP

Input: complete graph , metric edge weight function .G l

13

G = K9
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2-approximation-algorithm for metric TSP

Input: complete graph , metric edge weight function .G l
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G = K9

T
1. Determine MST  in .T G
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2-approximation-algorithm for metric TSP

Input: complete graph , metric edge weight function .G l

15

2. Double all edges in T

T T′￼

(*) Note that  is a multigraph.T′￼
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2-approximation-algorithm for metric TSP

Input: complete graph , metric edge weight function .G l
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3. Find Eulerian circuit  in .E T′￼

ET′￼

(*) possible since every degree is even by construction of .T′￼
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Input: complete graph , metric edge weight function .G l

2-approximation-algorithm for metric TSP
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E
4. Shorten E

We shorten  by walking along it and skipping vertices we already 
walked over. In this example we start at  and walk to the right.

E
v

v

H

(*) here we use the fact that the edge weight function fulfills the triangle inequality.

(**) remember that  is a complete graph, thus making it possible to walk over any edge we get by shortening.G
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Let OPT be the cheapest Hamiltonian cycle. Then OPT  is a spanning tree.


cost(                         )  cost(OPT )  cost(OPT)


cost(                         )  cost(                         )  cost(OPT)


cost(                         )  cost(                         )  cost(OPT)


cost(                         )  cost(                         )  cost(OPT)

∖{e}

≤ ∖{e} ≤

= 2 ⋅ ≤ 2 ⋅

= ≤ 2 ⋅

≤ ≤ 2 ⋅

Analysis

 is a MSTT

T

construction of T′￼

T′￼ T

 is Eulerian circuit.E

E T′￼

 fulfills the triangle inequality, thus by shortening the cost can only get shorter.l

H E
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Runtime

1. Determine MST  in   


2. Double all edges in , call it  (a multigraph) 


3. Find Eulerian circuit  in 


4. Shorten  (we will see what this means) 

T G ⟹ O(n2)

T T′￼ ⟹ O(m)

E T′￼ ⟹ O(n)

E ⟹ O(n)
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See theorem 1.19. Remember that  is complete, thus .G m = O(n2)

Theorem 1.31. (b) we can find a Eulerian circuit in . Since  has  edges we have .O(m) T′￼ 2(n − 1) O(n)
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Result

20


