Proof of m(a/e) > m(a).

Byection between

Klanten in a Russer denen twistner u und of
Wanten in a/e }

Therefore we can't say Gle contains

a smaller minimum out a than in

Gras we can always find a' in

G. L. |C| = |C'|.

On the other hand.

So for some e se indeed have $\mu(h) < \mu(h)$. There fore $\mu(h) \in \mu(h) \in \mu(h)$.

Proof of
$$Pr(\mu(a) = \mu(a/e)) > 1 - \frac{2}{n}$$

$$|E| = \frac{1}{2} \sum_{v \in V} deg(v) \ge \frac{k u}{2}$$

Note
$$e \notin C = \mu(a)$$

We know if et C then also $\mu(u|e) = \mu(h)$. But there are also cases where et C but still $\mu(h|e) = \mu(h)$

$$(e \notin C) \mu(u) = \mu(u/e)$$
 $(e \notin C)$.

$$Fr(\mu(h) = \mu(u(e))) \ge Fr(e \neq c) = 1 - Pr(e \neq c)$$

$$= 1 - \frac{|C|}{|E|}$$

$$\ge 1 - \frac{k}{\mu u/2} = 1 - \frac{2}{n}.$$