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Zusammenhang

Definition 1.23. A graph G = (V, E) is said to be k-connected (or k-vertex-

connected) if it remains connected whenever fewer than k vertices are
removed.

Definition 1.24. A graph G = (V, E) is said to be k-edge-connected if it
remains connected whenever fewer than k edges are removed.
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Zusammenhang

» If the induced subgraph G[V\X], for X C V, is not connected anymore, then
we call X a vertex separator (Knotenseparator).

» If u,v € V are in different connected components in G[V\X], then we call X
a u-v vertex separator (u-v-Knotenseparator).

o Similarly, we can define edge separator (Kantenseparator) and 1-v edge
separator (u-v-Kantenseparator).
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Examples

X = {B,C)
G=(V,E) A G[V\X] A

(*) G is 2-connected. Taking away any single vertex does not change G’s connectivity.
(**) The induced subgraph G[V\X] is not connected. X is a vertex separator.

(***) X is a A-D vertex separator, because A and D are in different connected components after removing the vertices in X.
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Examples

X=11B,4},14,C} ]

G=(V.E) A G=V.E\X)

(*) G is 2-edge-connected. Taking away any single edge does not change G’s connectivity.
(**) G is not connected. X is a edge separator.

(***) X is a A-B edge separator, because A and B are in different connected components after removing the edges in X.
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Zusammenhang

e |t is easy to see that any k-connected graph is also /-connected for [ < k (this
also applies to k-edge-connected).

« We define the vertex/edge connectivity of (G to be the biggest & such that G is
k-connected/k-edge-connected.

e We have;

vertex connectivity < edge connectivity < minimal degree \
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Zusammenhang

Satz 1.25 (Menger). Sei G = (V,E) ein Graph und u,v € V,u # v.
Dann gilt:

a) Jeder u-v-Knotenseparator hat Grosse mindestens k <= Es gibt
mindestens k intern-knotendisjunkte u-v-Pfade.

b) Jeder u-v-Kantenseparator hat Grosse mindestens k <= Es gibt
mindestens k kantendisjunkte u-v-Pfade.

Without proof (for now).



Satz 1.25 (Menger). Sei G = (V,E) ein Graph und u,v € V,u # v.

Dann git: Zusammenhang

a) Jeder u-v-Knotenseparator hat Grosse mindestens k <> Es gibt
mindestens k intern-knotendisjunkte u-v-Pfade.

b) Jeder u-v-Kantenseparator hat Grosse mindestens k <= Es gibt
mindestens k kantendisjunkte u-v-Pfade.
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Zusammenhang

Lemma: Let G = (V, E) be a connected graph. If {u,v} € E is a bridge, then
1 and v are cut vertices unless they have degree 1.

What about the other direction? Let ¢ = {u, v} € E with u, v cut vertices. Is e

not a bridge!

Counterexample:
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Blocke

Definition: Sei G = (V, E)). Wir definieren eine Aquivalenzrelation auf E
durch

®

= f, oder

e~ i< < _ .
{: Kreis durch e und f

Die Aquivalenzklassen nennen wir Bldcke.
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DiscMath Recap

A binary relation ~ on a set X is said to be an equivalence relation if and only if
It IS:

o Reflexive:a ~ a

e Symmetric:a ~ bifandonlyifb ~ a
 Transitive:ifa ~band b ~ cthena ~ ¢
Foralla, b, c € X.

The equivalence class of a under ~ is defined as [a] ;= {x € X: x ~ a}.

(*) Example: modulo 2 equivalence relation on Z, then the two equivalence classes are even and odd numbers.
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Definition: Sei G = (V, F/) ein zusammenhangender Graph.

Der Block-Graph von G ist der bipartite Graph 7' = (AW B, E1) mit
A = {Artikulationsknoten von G'}.
B = {Blocke von G}.

Va € A,be B: {a,b} € Ep <= a inzident zu einer Kante in b.

AVADZA

[f] 8] 7]
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DFS for finding bridges/cut vertices

» Given an undirected graph G = (V, E), find the bridges and cut vertices.
* Naive: remove edges/vertices and check for connectedness.

* As we will see, there is a more efficient approach using DFS.
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DFS recap
\D /J\ 'de
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DFS recap

tree edge

L B
----------- restkanten r
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DFS recap

tree edge A \
----------- restkanten
. C
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DFS for finding bridges/cut vertices

* We extend traditional DFS by maintaining the following information
throughout iteration:

« dfs|v] ... the time DFS “entered” vertex v (dfs|r] = 1, where r is the root of
the DFS tree).

» low|V] ... the lowest entry time dfs|w] we can reach from v through a
directed path consisting of an arbitrary number of tree edges and a single
restkante.

» The root will be treated separately, so we don’t define low|r], where r is the
root of the DFS tree.
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tree edge

restkanten
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tree edge

........... restkanten
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smallest dfs-number

C—>B—> L > A

only one restkante

smallest dfs-number
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Let v € V such that v is not the root of the DFS tree.

We show that v is a cut vertex if and only if v has a neighbor u such that
low[u] > dfs|v].
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(=) Proof

Assume that v is a cut vertex. Then G[V\{Vv}] has at least 2 connected
components Z; and Z,. Without loss of generality, assume s € Z;.

Every path from s to a vertex in Z2 must include v, we have
| = dfs[s] < dfs|[v] < dfs[w] Vw € 4%,

Since G[Z,] is a connected component in G[V\ {v}], there cannot be an edge
fromw € Z,toavertexu € V\({v} U Z,).

Georg Hasebe 27



Since G[Z,] is a connected component in G[V\{v}], there
fromw € Z,toavertexu € V\({v} UZ%Z,).

G[VA{v}]
w remove v
o e et Z2 — s 7 w 7
S 1 1 2
there could possibly be more than 2 connected components after removing v G[Zz]
hence Z, is only part of the bigger shaded region which contains all vertices V\({V} U Zz)
that are not in Z; or v itself. If there was such an , then u would be connected to Z, and therefore element

of Z, but V\({v} U Z,) doesn’t contain vertices from Z,.
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(=) Proof

Since G[Z,] is a connected component in G[V\ {v}], there cannot be an edge
fromw € Z,toavertexinu € V\({v} UZ,).

Thus low|w] is at least dfs|v] for all w € Z,. Since v is connected to Z,, it has
at least one neighbor w € Z, such that low|w] > dfs[v].
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DiskMath Recap

Contraposition:
P — Q is equivalentto =0 — =P
Here:

Vv is a cut vertex < v has a neighbor u such that low|u] > dfs|V]

<

v is not a cut vertex = v has no neighbor 1« such that low|u]| > dfs|v]
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using contraposition

(<)

Assume Vv IS hot a cut vertex.

Let 1 be the DFS tree rooted at s and let wy,, ..., w; be all the neighbors of v in
G. Without loss of generality, assume dfs[w,] < dfs|v].
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WO dfs[wy] < dfs[v] since we reach wy, earlier from s than v.
W1 W2 © o Wy
by construction of the DFS algorithm, the subtrees rooted at wy, ..., w;, cannot be connected.

but they have to be connected in G, otherwise v would be a cut vertex.
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using contraposition

(<) Proof

For every neighbor wy, ..., w, there exists a path using a restkante to a vertex
with smaller dfs-number.

®S

< dfs[v]
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using contraposition

(<) Proof

For every neighbor wy, ..., w, there exists a path using a restkante to a vertex
with smaller dfs-number.

Thus low|w] is greater than dfs|v] for all neighbors w of v, meaning that there is
no neighbor w of v such that low|v] > dfs|u].
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What about the root?

Let T"be the DFS tree rooted at s. If deg(s) > 2 then s is a cut vertex.

Proof. Assume deg(s) = [ > 2. By construction of the DFS algorithm, the
subtrees rooted at wy, ..., w; cannot be connected. Even if there was a

restkante from a subtree to s, after removing s the vertices contained in the
subtrees become disconnected in G[V\ {s}].

Thus s Is a cut vertex.
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tree edge

restkanten

)

Identify the cut vertices
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Identify the cut vertices

(1)
A A since it is the root and deg(A) > 2
........... restkanten (10, 10) / . 2, 1) D since E is a neighbor of D and

| 5 . ow[E] = 10 > dfs[D] = 10.
(dfs[v], ) LA \
V S B since F is a neighbor of B and
(1,10 : Bl . ow[F] = 3 > dfs[D] = 3.
cut vertex: E / \ k
. (9, ) :_' (4’ )

: L F
(12, 10) \l' 5, 3)
J Gh
©, 9 v
TR :(8,2)
| — K-
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DFS-VisiT(G, v)

—
<

11:
12:
13:

num ¢ num -+ |

dfs|v

V

low

— num
— dfs[V]

isArtVert|v] ¢ FALSE
for all {v,w} € E do
if dfs(w| = 0 then

T T4 {v,w}

val < DFS-VisiT(G,w)

if val > dfs[v] then
isArtVert|v] < TRUE

low[v] <« min{low|v], val}

else dfsiw] #0 and {v,w} & T

low[v] < min{low[v], dfs(w]}

14: return low[V]

DFS(G,s)

1: WeV: dfslvl«0

2: num + O

3:T«0

4: DFS-VisiT(G, s)

5: if s hat in T Grad mindestens zwei then
6: isArtVert(s| « TRUE

7. else

8: isArtVert(s| ¢« FALSE

r

Georg Hasebe

Kapitel 1 — Graphentheorie, p. 39

Pseudocode
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Result (cut vertices)

Satz 1.27. Fiir zusammenhangende Graphen G = (V, E), die mit Ad-
jazenzlisten gespeichert sind, kann man in Zeit O(|E|) alle Artikula-

tionsknoten berechnen.

Note that DFS normally runs in O(| V| + | E|) but since we assume G is connected, we know that | E| > | V| — 1 thus
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[VI+IE] <2-[E] < O(|E]).
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What about bridges?

» First, notice that if G (connected) contains a bridge ¢ € E, any spanning tree
of G must contain e.

» Hence the DFS tree must contain e, as it is a spanning tree of G.

e We reuse our Lemma from earlier:

Lemma: Let G = (V, E) be a connected graph. If {u, v} € E is a bridge, then
u and v are cut vertices unless they have degree 1.
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What about bridges?

Lemma: Let G = (V, E) be a connected graph. If {u,v} € E is a bridge, then
1 and v are cut vertices unless they have degree 1.

Let e = (v, w) be an edge in the DFS tree T then e is a bridge if and only if
low|[w]| > dfs|v].
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