Algorithms and Probability

Week 1

Zusammenhang

Definition 1.23. A graph G = (V, E) is said to be k-connected (or k-vertex-connected) if it remains connected whenever fewer than k vertices are removed.

Definition 1.24. A graph G = (V, E) is said to be k-edge-connected if it remains connected whenever fewer than k edges are removed.

Zusammenhang

- If the induced subgraph $G[V \setminus X]$, for $X \subseteq V$, is not connected anymore, then we call X a *vertex separator* (Knotenseparator).
- If $u, v \in V$ are in different connected components in $G[V \setminus X]$, then we call X a u-v vertex separator (u-v-Knotenseparator).
- Similarly, we can define *edge separator* (Kantenseparator) and u-v *edge separator* (u-v-Kantenseparator).

Examples

$$X = \{B, C\}$$

$$G[V \backslash X]$$

(D)——(E)

- (*) G is 2-connected. Taking away any single vertex does not change G's connectivity.
- (**) The induced subgraph $G[V \setminus X]$ is not connected. X is a *vertex separator*.
- (***) X is a A-D vertex separator, because A and D are in different connected components after removing the vertices in X.

Examples

$$G = (V, E)$$
 A
 C

$$X = \{\{B, A\}, \{A, C\}\}$$

$$\tilde{G} = (V, E \setminus X)$$

- (*) G is 2-edge-connected. Taking away any single edge does not change G's connectivity.
- (**) \tilde{G} is not connected. X is a edge separator.
- (***) X is a A-B edge separator, because A and B are in different connected components after removing the edges in X.

Zusammenhang

- It is easy to see that any k-connected graph is also l-connected for l < k (this also applies to k-edge-connected).
- We define the vertex/edge connectivity of G to be the biggest k such that G is k-connected/k-edge-connected.
- We have:

vertex connectivity ≤ edge connectivity ≤ minimal degree

Zusammenhang

Satz 1.25 (Menger). Sei G = (V, E) ein Graph und $u, v \in V, u \neq v$. Dann gilt:

- a) Jeder u-v-Knotenseparator hat Grösse mindestens $k \iff Es$ gibt mindestens k intern-knotendisjunkte u-v-Pfade.
- b) Jeder u-v-Kantenseparator hat Grösse mindestens $k \iff Es$ gibt mindestens k kantendisjunkte u-v-Pfade.

Without proof (for now).

Satz 1.25 (Menger). Sei G = (V, E) ein Graph und $u, v \in V, u \neq v$. Dann gilt:

- a) Jeder u-v-Knotenseparator hat Grösse mindestens $k \iff Es$ gibt mindestens k intern-knotendisjunkte u-v-Pfade.
- b) Jeder u-v-Kantenseparator hat Grösse mindestens $k \iff Es$ gibt mindestens k kantendisjunkte u-v-Pfade.

Zusammenhang

Zusammenhang

Lemma: Let G = (V, E) be a connected graph. If $\{u, v\} \in E$ is a bridge, then u and v are cut vertices unless they have degree 1.

What about the other direction? Let $e = \{u, v\} \in E$ with u, v cut vertices. Is e a bridge?

Counterexample:

not a bridge!

Blöcke

Definition: Sei G = (V, E). Wir definieren eine Äquivalenzrelation auf E durch

$$e \sim f :\iff \begin{cases} e = f, & \text{oder} \\ \exists \text{ Kreis durch } e \text{ und } f \end{cases}$$

Die Äquivalenzklassen nennen wir Blöcke.

DiscMath Recap

A binary relation \sim on a set X is said to be an equivalence relation if and only if it is:

- Reflexive: $a \sim a$
- Symmetric: $a \sim b$ if and only if $b \sim a$
- Transitive: if $a \sim b$ and $b \sim c$ then $a \sim c$

For all $a, b, c \in X$.

The equivalence class of a under \sim is defined as $[a] := \{x \in X : x \sim a\}$.

(*) Example: modulo 2 equivalence relation on \mathbb{Z} , then the two equivalence classes are even and odd numbers.

Definition: Sei G = (V, E) ein zusammenhängender Graph.

Der Block-Graph von G ist der bipartite Graph $T = (A \uplus B, E_T)$ mit

- $A = \{Artikulationsknoten von G\}.$
- $B = \{Bl\"{o}cke von G\}.$
- $\forall a \in A, b \in B : \{a, b\} \in E_T \iff a \text{ inzident zu einer Kante in } b$.

DFS for finding bridges/cut vertices

- Given an undirected graph G = (V, E), find the bridges and cut vertices.
- Naive: remove edges/vertices and check for connectedness.
- As we will see, there is a more efficient approach using DFS.

DFS recap

DFS recap

tree edge

···· restkanten

DFS recap

tree edge

···· restkanten

DFS for finding bridges/cut vertices

- We extend traditional DFS by maintaining the following information throughout iteration:
 - dfs[v] ... the time DFS "entered" vertex v (dfs[r] = 1, where r is the root of the DFS tree).
 - low[v] ... the lowest entry time dfs[w] we can reach from v through a directed path consisting of an arbitrary number of tree edges and a single restkante.
- The root will be treated separately, so we don't define low[r], where r is the root of the DFS tree.

tree edge restkanten (dfs[v], low[v])

(3, 1) В (4, 3)F ····≯ D (5, 3)(12, 10)(10, 10) G (6, 3)smallest dfs-number Н **.** (8, 3) (7, 3)

(2, 1)

Proof

Let $v \in V$ such that v is **not the root** of the DFS tree.

We show that v is a cut vertex if and only if v has a neighbor u such that $low[u] \ge dfs[v]$.

 (\Rightarrow)

Proof

Assume that v is a cut vertex. Then $G[V \setminus \{v\}]$ has at least 2 connected components Z_1 and Z_2 . Without loss of generality, assume $s \in Z_1$.

Every path from s to a vertex in Z_2 must include v, we have $1 = \mathrm{dfs}[s] < \mathrm{dfs}[v] < \mathrm{dfs}[w] \quad \forall w \in Z_2$.

Since $G[Z_2]$ is a connected component in $G[V \setminus \{v\}]$, there cannot be an edge from $w \in Z_2$ to a vertex $u \in V \setminus (\{v\} \cup Z_2)$.

 (\Rightarrow)

Proof

. . .

Since $G[Z_2]$ is a connected component in $G[V \setminus \{v\}]$, there cannot be an edge from $w \in Z_2$ to a vertex $u \in V \setminus (\{v\} \cup Z_2)$.

there could possibly be more than 2 connected components after removing v hence Z_1 is only part of the bigger shaded region which contains all vertices that are not in Z_2 or v itself.

if there was such an edge, then u would be connected to Z_2 and therefore element of Z_2 but $V\setminus (\{v\}\cup Z_2)$ doesn't contain vertices from Z_2 .

 (\Rightarrow)

Proof

. . .

Since $G[Z_2]$ is a connected component in $G[V \setminus \{v\}]$, there cannot be an edge from $w \in Z_2$ to a vertex in $u \in V \setminus (\{v\} \cup Z_2)$.

Thus low[w] is at least dfs[v] for all $w \in Z_2$. Since v is connected to Z_2 , it has at least one neighbor $w \in Z_2$ such that $low[w] \ge dfs[v]$.

DiskMath Recap

Contraposition:

 $P \rightarrow Q$ is equivalent to $\neg Q \rightarrow \neg P$

Here:

v is a cut vertex $\Leftarrow v$ has a neighbor u such that $low[u] \ge dfs[v]$

 \Leftrightarrow

v is **not** a cut vertex $\Rightarrow v$ **has no** neighbor u such that $low[u] \ge dfs[v]$

Proof

Assume v is not a cut vertex.

Let T be the DFS tree rooted at s and let $w_0, ..., w_l$ be all the neighbors of v in G. Without loss of generality, assume $dfs[w_0] < dfs[v]$.

Proof

by construction of the DFS algorithm, the subtrees rooted at $w_1, ..., w_l$ cannot be connected.

but they have to be connected in G, otherwise v would be a cut vertex.

 (\Leftarrow)

Proof

. . .

For every neighbor w_1, \ldots, w_l there exists a path using a restkante to a vertex

with smaller dfs-number.

Proof

. . .

For every neighbor $w_1, ..., w_l$ there exists a path using a restkante to a vertex with smaller dfs-number.

Thus low[w] is greater than dfs[v] for all neighbors w of v, meaning that there is no neighbor w of v such that $low[v] \ge dfs[u]$.

What about the root?

Let T be the DFS tree rooted at s. If $deg(s) \ge 2$ then s is a cut vertex.

Proof. Assume $\deg(s) = l \ge 2$. By construction of the DFS algorithm, the subtrees rooted at w_1, \ldots, w_l cannot be connected. Even if there was a restkante from a subtree to s, after removing s the vertices contained in the subtrees become disconnected in $G[V \setminus \{s\}]$.

Thus s is a cut vertex.

Identify the cut vertices

tree edge $\cdots \cdots$ restkanten (dfs[v], low[v])

Identify the cut vertices

- A since it is the root and $deg(A) \ge 2$ in the DFS tree.
- since E is a neighbor of D and $low[E] = 10 \ge dfs[D] = 10$.
- since F is a neighbor of B and $low[F] = 3 \ge dfs[D] = 3$.

Pseudocode

```
DFS-Visit(G, v)
 1: num \leftarrow num + 1
 2: dfs[v] \leftarrow num
 3: low[v] \leftarrow dfs[v]
 4: isArtVert[v] \leftarrow FALSE
 5: for all \{v, w\} \in E do
         if dfs[w] = 0 then
 6:
          \mathsf{T} \leftarrow \mathsf{T} + \{\mathsf{v}, \mathsf{w}\}
 7:
             val \leftarrow DFS-Visit(G, w)
 8:
             if val \geq dfs[v] then
 9:
                   isArtVert[v] \leftarrow TRUE
10:
              low[v] \leftarrow min\{low[v], val\}
11:
         else dfs[w] \neq 0 and \{v, w\} \notin T
12:
              low[v] \leftarrow min\{low[v], dfs[w]\}
13:
14: return low[v]
```

```
DFS(G,s)
```

```
1: \forall v \in V: dfs[v] \leftarrow 0
```

2:
$$num \leftarrow 0$$

3:
$$T \leftarrow \emptyset$$

4: DFS-VISIT
$$(G, s)$$

5: if s hat in T Grad mindestens zwei then

```
isArtVert[s] \leftarrow TRUE
```

7: else

 $isArtVert[s] \leftarrow FALSE$

Kapitel 1 — Graphentheorie, p. 39

Result (cut vertices)

Satz 1.27. Für zusammenhängende Graphen G = (V, E), die mit Adjazenzlisten gespeichert sind, kann man in Zeit O(|E|) alle Artikulationsknoten berechnen.

Note that DFS normally runs in O(|V| + |E|) but since we assume G is connected, we know that $|E| \ge |V| - 1$ thus $|V| + |E| \le 2 \cdot |E| \le O(|E|)$.

What about bridges?

- First, notice that if G (connected) contains a bridge $e \in E$, any spanning tree of G must contain e.
- Hence the DFS tree must contain e, as it is a spanning tree of G.
- We reuse our Lemma from earlier:

Lemma: Let G = (V, E) be a connected graph. If $\{u, v\} \in E$ is a bridge, then u and v are cut vertices unless they have degree 1.

What about bridges?

Lemma: Let G = (V, E) be a connected graph. If $\{u, v\} \in E$ is a bridge, then u and v are cut vertices unless they have degree 1.

Let e = (v, w) be an edge in the DFS tree T, then e is a bridge if and only if low[w] > dfs[v].