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Zusammenhang
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Definition 1.23. A graph  is said to be -connected (or -vertex-
connected) if it remains connected whenever fewer than  vertices are 
removed.

G = (V, E) k k
k

Definition 1.24. A graph  is said to be -edge-connected if it 
remains connected whenever fewer than  edges are removed.

G = (V, E) k
k
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Zusammenhang

• If the induced subgraph , for , is not connected anymore, then 
we call  a vertex separator (Knotenseparator).


• If  are in different connected components in , then we call  
a -  vertex separator ( - -Knotenseparator).


• Similarly, we can define edge separator (Kantenseparator) and -  edge 
separator ( - -Kantenseparator).

G[V∖X] X ⊆ V
X

u, v ∈ V G[V∖X] X
u v u v

u v
u v

3
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Examples

4

B C

D E

AG = (V, E)

(*)  is -connected. Taking away any single vertex does not change ’s connectivity.

(**) The induced subgraph  is not connected.  is a vertex separator.

(***)  is a -  vertex separator, because  and  are in different connected components after removing the vertices in .

G 2 G
G[V∖X] X

X A D A D X

D E

AG[V∖X]
X = {B, C}
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Examples
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B C

D E

AG = (V, E) A
G̃ = (V, E∖X)

B C

D E

X = {{B, A}, {A, C}}

(*)  is -edge-connected. Taking away any single edge does not change ’s connectivity.

(**)  is not connected.  is a edge separator.

(***)  is a -  edge separator, because  and  are in different connected components after removing the edges in .

G 2 G
G̃ X
X A B A B X
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Zusammenhang

• It is easy to see that any -connected graph is also -connected for  (this 
also applies to -edge-connected).


• We define the vertex/edge connectivity of  to be the biggest  such that  is 
-connected/ -edge-connected.


• We have:

k l l < k
k

G k G
k k

6

vertex connectivity  edge connectivity  minimal degree≤ ≤
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Zusammenhang
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Without proof (for now).
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Zusammenhang
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Zusammenhang
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Lemma: Let  be a connected graph. If  is a bridge, then 
 and  are cut vertices unless they have degree .

G = (V, E) {u, v} ∈ E
u v 1

What about the other direction? Let  with  cut vertices. Is  
a bridge?


Counterexample:

e = {u, v} ∈ E u, v e

u ve

not a bridge!
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Blöcke
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DiscMath Recap
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A binary relation  on a set  is said to be an equivalence relation if and only if 
it is:


• Reflexive: 


• Symmetric:  if and only if 


• Transitive: if  and  then 


For all .


The equivalence class of  under  is defined as .

∼ X

a ∼ a

a ∼ b b ∼ a

a ∼ b b ∼ c a ∼ c

a, b, c ∈ X

a ∼ [a] := {x ∈ X : x ∼ a}

(*) Example: modulo 2 equivalence relation on , then the two equivalence classes are even and odd numbers.ℤ
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B
C

D E

F

J

H

G
I

A

e f g

h i
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B
C

D E

F

J

H

G
I

A

e f g

h i

[e] [ f ]

[g]
[i]

[h]
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B
C

D E

F

J

H

G
I

A

e f g

h i

[e] [ f ]

[g]
[i]

[h]
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C
H

G

[e] [ f ]
[g] [i]

[h]
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C H G

[e] [ f ] [g] [i][h]

A

B
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DFS for finding bridges/cut vertices

• Given an undirected graph , find the bridges and cut vertices.


• Naive: remove edges/vertices and check for connectedness.


• As we will see, there is a more efficient approach using DFS.

G = (V, E)

19
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DFS recap
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C

B

G

D H

F

A

start DFS here

K

I

L

J

E
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DFS recap
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C

B

G

D H

F

A
K

I

L

J

E

tree edge

restkanten
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DFS recap
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C

B

G

D

H

F

A

KI

L

J

E

tree edge

restkanten
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DFS for finding bridges/cut vertices

• We extend traditional DFS by maintaining the following information 
throughout iteration:


•  … the time DFS “entered” vertex  (dfs , where  is the root of 
the DFS tree).


• low  … the lowest entry time dfs  we can reach from  through a 
directed path consisting of an arbitrary number of tree edges and a single 
restkante.


• The root will be treated separately, so we don’t define low , where  is the 
root of the DFS tree.

dfs[v] v [r] = 1 r

[v] [w] v

[r] r

23
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tree edge

restkanten

(dfs , low )[v] [v]

v

C

B

G

D

H

F

A

KI

L

J

E

(1)

(10, low[D])

(11, low[E])

(12, low[J])

(2, low[C])

(3, low[B])

(4, low[F])

(5, low[G])

(6, low[H])

(7, low[I]) (8, low[K])

(9, low[L])
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tree edge

restkanten

(dfs , low )[v] [v]

v

C

B

G

D

H

F

A

KI

L

J

E

(1)

(10, 10)

(11, 10)

(12, 10)

(2, 1)

(3, 1)

(4, 3)

(5, 3)

(6, 3)

(7, 3) (8, 3)

(9, 1)

D

AC B L

only one restkante

(1)(2, 1)

smallest dfs-number

J
(12, 10) (10, 10)

smallest dfs-number
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Proof

Let  such that  is not the root of the DFS tree. 


We show that  is a cut vertex if and only if  has a neighbor  such that 
.

v ∈ V v

v v u
low[u] ≥ dfs[v]

26
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Proof

Assume that  is a cut vertex. Then  has at least  connected 
components  and . Without loss of generality, assume .


Every path from  to a vertex in  must include , we have 
.


Since  is a connected component in , there cannot be an edge 
from  to a vertex .

v G[V∖{v}] 2
Z1 Z2 s ∈ Z1

s Z2 v
1 = dfs[s] < dfs[v] < dfs[w] ∀w ∈ Z2

G[Z2] G[V∖{v}]
w ∈ Z2 u ∈ V∖({v} ∪ Z2)

27

( ⇒ )
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Proof

…


Since  is a connected component in , there cannot be an edge 
from  to a vertex .

G[Z2] G[V∖{v}]
w ∈ Z2 u ∈ V∖({v} ∪ Z2)

28

( ⇒ )

vZ1
Z2 ⟹

remove v

Z2

G[Z2]

G[V∖{v}]

G

if there was such an edge, then  would be connected to  and therefore element 
of  but  doesn’t contain vertices from .

u Z2
Z2 V∖({v} ∪ Z2) Z2

s

there could possibly be more than  connected components after removing  
hence  is only part of the bigger shaded region which contains all vertices 
that are not in  or  itself.

2 v
Z1

Z2 v

Z1s

V∖({v} ∪ Z2)

w
w
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Proof

…


Since  is a connected component in , there cannot be an edge 
from  to a vertex in .


Thus  is at least  for all . Since  is connected to , it has 
at least one neighbor  such that .

G[Z2] G[V∖{v}]
w ∈ Z2 u ∈ V∖({v} ∪ Z2)

low[w] dfs[v] w ∈ Z2 v Z2
w ∈ Z2 low[w] ≥ dfs[v]

29

( ⇒ )
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DiskMath Recap

Contraposition:


 is equivalent to 


Here:


 is a cut vertex   has a neighbor  such that 





 is not a cut vertex   has no neighbor  such that 


P → Q ¬Q → ¬P

v ⇐ v u low[u] ≥ dfs[v]

⇔

v ⇒ v u low[u] ≥ dfs[v]

30
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Proof

Assume  is not a cut vertex.


Let  be the DFS tree rooted at  and let  be all the neighbors of  in 
. Without loss of generality, assume .


v

T s w0, …, wl v
G dfs[w0] < dfs[v]

31

( ⇐ )
using contraposition
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Proof

32

 since we reach  earlier from  than .dfs[w0] < dfs[v] w0 s v

by construction of the DFS algorithm, the subtrees rooted at  cannot be connected.w1, …, wl

but they have to be connected in , otherwise  would be a cut vertex.G v
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…


For every neighbor  there exists a path using a restkante to a vertex 
with smaller dfs-number.


w1, …, wl

Proof

33

( ⇐ )
using contraposition

< dfs[v]
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…


For every neighbor  there exists a path using a restkante to a vertex 
with smaller dfs-number.


Thus  is greater than  for all neighbors  of , meaning that there is 
no neighbor  of  such that .

w1, …, wl

low[w] dfs[v] w v
w v low[v] ≥ dfs[u]

Proof

34

( ⇐ )
using contraposition
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What about the root?

Let  be the DFS tree rooted at . If  then  is a cut vertex.


Proof. Assume . By construction of the DFS algorithm, the 
subtrees rooted at  cannot be connected. Even if there was a 
restkante from a subtree to , after removing  the vertices contained in the 
subtrees become disconnected in .


Thus  is a cut vertex.

T s deg(s) ≥ 2 s

deg(s) = l ≥ 2
w1, …, wl

s s
G[V∖{s}]

s

35

s

w0 w1 wl
…
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Identify the cut vertices

36

tree edge

restkanten

(dfs , low )[v] [v]

v

C

B

G

D

H

F

A

KI

L

J

E

(1)

(10, 10)

(11, 10)

(12, 10)

(2, 1)

(3, 1)

(4, 3)

(5, 3)

(6, 3)

(7, 3) (8, 3)

(9, 1)
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Identify the cut vertices
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C

B

G

D

H

F

A

KI

L

J

E

(1)

(10, 10)

(11, 10)

(12, 10)

(2, 1)

(3, 1)

(4, 3)

(5, 3)

(6, 3)

(7, 3) (8, 3)

(9, 1)

tree edge

restkanten

(dfs , low )[v] [v]

v

cut vertex:

A

D

B

since it is the root and 

in the DFS tree.

deg(A) ≥ 2

since E is a neighbor of D and 
low[E] = 10 ≥ dfs[D] = 10.

since F is a neighbor of B and 
low[F] = 3 ≥ dfs[D] = 3.
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C

B

G

D H

F

A
K

I

L

J

E

C

B

G

D H

F

K

I

L

J

E

C

G

D H

F

A

K

I

L

J

E

C

B

G

H

F

A

K

I

L

J

E

remove A

remove B

remove D
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Pseudocode
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Kapitel 1 — Graphentheorie, p. 39
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Result (cut vertices)
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Note that DFS normally runs in  but since we assume  is connected, we know that  thus 
.

O( |V | + |E | ) G |E | ≥ |V | − 1
|V | + |E | ≤ 2 ⋅ |E | ≤ O( |E | )
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What about bridges?

• First, notice that if  (connected) contains a bridge , any spanning tree 
of  must contain .


• Hence the DFS tree must contain , as it is a spanning tree of .


• We reuse our Lemma from earlier:

G e ∈ E
G e

e G

41

Lemma: Let  be a connected graph. If  is a bridge, then 
 and  are cut vertices unless they have degree .

G = (V, E) {u, v} ∈ E
u v 1
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What about bridges?

Let  be an edge in the DFS tree , then  is a bridge if and only if 
.


e = (v, w) T e
low[w] > dfs[v]

42

Lemma: Let  be a connected graph. If  is a bridge, then 
 and  are cut vertices unless they have degree .

G = (V, E) {u, v} ∈ E
u v 1


