
Georg Hasebe — 22/02/2024

Algorithms and Probability
Week 1

Georg Hasebe

Zusammenhang

2

Definition 1.23. A graph is said to be -connected (or -vertex-
connected) if it remains connected whenever fewer than vertices are
removed.

G = (V, E) k k
k

Definition 1.24. A graph is said to be -edge-connected if it
remains connected whenever fewer than edges are removed.

G = (V, E) k
k

Georg Hasebe

Zusammenhang

• If the induced subgraph , for , is not connected anymore, then
we call a vertex separator (Knotenseparator).

• If are in different connected components in , then we call
a - vertex separator (- -Knotenseparator).

• Similarly, we can define edge separator (Kantenseparator) and - edge
separator (- -Kantenseparator).

G[V∖X] X ⊆ V
X

u, v ∈ V G[V∖X] X
u v u v

u v
u v

3

Georg Hasebe

Examples

4

B C

D E

AG = (V, E)

(*) is -connected. Taking away any single vertex does not change ’s connectivity.

(**) The induced subgraph is not connected. is a vertex separator.

(***) is a - vertex separator, because and are in different connected components after removing the vertices in .

G 2 G
G[V∖X] X

X A D A D X

D E

AG[V∖X]
X = {B, C}

Georg Hasebe

Examples

5

B C

D E

AG = (V, E) A
G̃ = (V, E∖X)

B C

D E

X = {{B, A}, {A, C}}

(*) is -edge-connected. Taking away any single edge does not change ’s connectivity.

(**) is not connected. is a edge separator.

(***) is a - edge separator, because and are in different connected components after removing the edges in .

G 2 G
G̃ X
X A B A B X

Georg Hasebe

Zusammenhang

• It is easy to see that any -connected graph is also -connected for (this
also applies to -edge-connected).

• We define the vertex/edge connectivity of to be the biggest such that is
-connected/ -edge-connected.

• We have:

k l l < k
k

G k G
k k

6

vertex connectivity edge connectivity minimal degree≤ ≤

Georg Hasebe

Zusammenhang

7

Without proof (for now).

Georg Hasebe

Zusammenhang

8

Georg Hasebe

Zusammenhang

9

Lemma: Let be a connected graph. If is a bridge, then
 and are cut vertices unless they have degree .

G = (V, E) {u, v} ∈ E
u v 1

What about the other direction? Let with cut vertices. Is
a bridge?

Counterexample:

e = {u, v} ∈ E u, v e

u ve

not a bridge!

Georg Hasebe

Blöcke

10

Georg Hasebe

DiscMath Recap

11

A binary relation on a set is said to be an equivalence relation if and only if
it is:

• Reflexive:

• Symmetric: if and only if

• Transitive: if and then

For all .

The equivalence class of under is defined as .

∼ X

a ∼ a

a ∼ b b ∼ a

a ∼ b b ∼ c a ∼ c

a, b, c ∈ X

a ∼ [a] := {x ∈ X : x ∼ a}

(*) Example: modulo 2 equivalence relation on , then the two equivalence classes are even and odd numbers.ℤ

Georg Hasebe 14

B
C

D E

F

J

H

G
I

A

e f g

h i

Georg Hasebe 15

B
C

D E

F

J

H

G
I

A

e f g

h i

[e] [f]

[g]
[i]

[h]

Georg Hasebe 16

B
C

D E

F

J

H

G
I

A

e f g

h i

[e] [f]

[g]
[i]

[h]

Georg Hasebe 17

C
H

G

[e] [f]
[g] [i]

[h]

Georg Hasebe 18

C H G

[e] [f] [g] [i][h]

A

B

Georg Hasebe

DFS for finding bridges/cut vertices

• Given an undirected graph , find the bridges and cut vertices.

• Naive: remove edges/vertices and check for connectedness.

• As we will see, there is a more efficient approach using DFS.

G = (V, E)

19

Georg Hasebe

DFS recap

20

C

B

G

D H

F

A

start DFS here

K

I

L

J

E

Georg Hasebe

DFS recap

21

C

B

G

D H

F

A
K

I

L

J

E

tree edge

restkanten

Georg Hasebe

DFS recap

22

C

B

G

D

H

F

A

KI

L

J

E

tree edge

restkanten

Georg Hasebe

DFS for finding bridges/cut vertices

• We extend traditional DFS by maintaining the following information
throughout iteration:

• … the time DFS “entered” vertex (dfs , where is the root of
the DFS tree).

• low … the lowest entry time dfs we can reach from through a
directed path consisting of an arbitrary number of tree edges and a single
restkante.

• The root will be treated separately, so we don’t define low , where is the
root of the DFS tree.

dfs[v] v [r] = 1 r

[v] [w] v

[r] r

23

Georg Hasebe 24

tree edge

restkanten

(dfs , low)[v] [v]

v

C

B

G

D

H

F

A

KI

L

J

E

(1)

(10, low[D])

(11, low[E])

(12, low[J])

(2, low[C])

(3, low[B])

(4, low[F])

(5, low[G])

(6, low[H])

(7, low[I]) (8, low[K])

(9, low[L])

Georg Hasebe 25

tree edge

restkanten

(dfs , low)[v] [v]

v

C

B

G

D

H

F

A

KI

L

J

E

(1)

(10, 10)

(11, 10)

(12, 10)

(2, 1)

(3, 1)

(4, 3)

(5, 3)

(6, 3)

(7, 3) (8, 3)

(9, 1)

D

AC B L

only one restkante

(1)(2, 1)

smallest dfs-number

J
(12, 10) (10, 10)

smallest dfs-number

Georg Hasebe

Proof

Let such that is not the root of the DFS tree.

We show that is a cut vertex if and only if has a neighbor such that
.

v ∈ V v

v v u
low[u] ≥ dfs[v]

26

Georg Hasebe

Proof

Assume that is a cut vertex. Then has at least connected
components and . Without loss of generality, assume .

Every path from to a vertex in must include , we have
.

Since is a connected component in , there cannot be an edge
from to a vertex .

v G[V∖{v}] 2
Z1 Z2 s ∈ Z1

s Z2 v
1 = dfs[s] < dfs[v] < dfs[w] ∀w ∈ Z2

G[Z2] G[V∖{v}]
w ∈ Z2 u ∈ V∖({v} ∪ Z2)

27

(⇒)

Georg Hasebe

Proof

…

Since is a connected component in , there cannot be an edge
from to a vertex .

G[Z2] G[V∖{v}]
w ∈ Z2 u ∈ V∖({v} ∪ Z2)

28

(⇒)

vZ1
Z2 ⟹

remove v

Z2

G[Z2]

G[V∖{v}]

G

if there was such an edge, then would be connected to and therefore element
of but doesn’t contain vertices from .

u Z2
Z2 V∖({v} ∪ Z2) Z2

s

there could possibly be more than connected components after removing
hence is only part of the bigger shaded region which contains all vertices
that are not in or itself.

2 v
Z1

Z2 v

Z1s

V∖({v} ∪ Z2)

w
w

Georg Hasebe

Proof

…

Since is a connected component in , there cannot be an edge
from to a vertex in .

Thus is at least for all . Since is connected to , it has
at least one neighbor such that .

G[Z2] G[V∖{v}]
w ∈ Z2 u ∈ V∖({v} ∪ Z2)

low[w] dfs[v] w ∈ Z2 v Z2
w ∈ Z2 low[w] ≥ dfs[v]

29

(⇒)

Georg Hasebe

DiskMath Recap

Contraposition:

 is equivalent to

Here:

 is a cut vertex has a neighbor such that

 is not a cut vertex has no neighbor such that

P → Q ¬Q → ¬P

v ⇐ v u low[u] ≥ dfs[v]

⇔

v ⇒ v u low[u] ≥ dfs[v]

30

Georg Hasebe

Proof

Assume is not a cut vertex.

Let be the DFS tree rooted at and let be all the neighbors of in
. Without loss of generality, assume .

v

T s w0, …, wl v
G dfs[w0] < dfs[v]

31

(⇐)
using contraposition

Georg Hasebe

Proof

32

 since we reach earlier from than .dfs[w0] < dfs[v] w0 s v

by construction of the DFS algorithm, the subtrees rooted at cannot be connected.w1, …, wl

but they have to be connected in , otherwise would be a cut vertex.G v

Georg Hasebe

…

For every neighbor there exists a path using a restkante to a vertex
with smaller dfs-number.

w1, …, wl

Proof

33

(⇐)
using contraposition

< dfs[v]

Georg Hasebe

…

For every neighbor there exists a path using a restkante to a vertex
with smaller dfs-number.

Thus is greater than for all neighbors of , meaning that there is
no neighbor of such that .

w1, …, wl

low[w] dfs[v] w v
w v low[v] ≥ dfs[u]

Proof

34

(⇐)
using contraposition

Georg Hasebe

What about the root?

Let be the DFS tree rooted at . If then is a cut vertex.

Proof. Assume . By construction of the DFS algorithm, the
subtrees rooted at cannot be connected. Even if there was a
restkante from a subtree to , after removing the vertices contained in the
subtrees become disconnected in .

Thus is a cut vertex.

T s deg(s) ≥ 2 s

deg(s) = l ≥ 2
w1, …, wl

s s
G[V∖{s}]

s

35

s

w0 w1 wl
…

Georg Hasebe

Identify the cut vertices

36

tree edge

restkanten

(dfs , low)[v] [v]

v

C

B

G

D

H

F

A

KI

L

J

E

(1)

(10, 10)

(11, 10)

(12, 10)

(2, 1)

(3, 1)

(4, 3)

(5, 3)

(6, 3)

(7, 3) (8, 3)

(9, 1)

Georg Hasebe

Identify the cut vertices

37

C

B

G

D

H

F

A

KI

L

J

E

(1)

(10, 10)

(11, 10)

(12, 10)

(2, 1)

(3, 1)

(4, 3)

(5, 3)

(6, 3)

(7, 3) (8, 3)

(9, 1)

tree edge

restkanten

(dfs , low)[v] [v]

v

cut vertex:

A

D

B

since it is the root and

in the DFS tree.

deg(A) ≥ 2

since E is a neighbor of D and
low[E] = 10 ≥ dfs[D] = 10.

since F is a neighbor of B and
low[F] = 3 ≥ dfs[D] = 3.

Georg Hasebe 38

C

B

G

D H

F

A
K

I

L

J

E

C

B

G

D H

F

K

I

L

J

E

C

G

D H

F

A

K

I

L

J

E

C

B

G

H

F

A

K

I

L

J

E

remove A

remove B

remove D

Georg Hasebe

Pseudocode

39

Kapitel 1 — Graphentheorie, p. 39

Georg Hasebe

Result (cut vertices)

40

Note that DFS normally runs in but since we assume is connected, we know that thus
.

O(|V | + |E |) G |E | ≥ |V | − 1
|V | + |E | ≤ 2 ⋅ |E | ≤ O(|E |)

Georg Hasebe

What about bridges?

• First, notice that if (connected) contains a bridge , any spanning tree
of must contain .

• Hence the DFS tree must contain , as it is a spanning tree of .

• We reuse our Lemma from earlier:

G e ∈ E
G e

e G

41

Lemma: Let be a connected graph. If is a bridge, then
 and are cut vertices unless they have degree .

G = (V, E) {u, v} ∈ E
u v 1

Georg Hasebe

What about bridges?

Let be an edge in the DFS tree , then is a bridge if and only if
.

e = (v, w) T e
low[w] > dfs[v]

42

Lemma: Let be a connected graph. If is a bridge, then
 and are cut vertices unless they have degree .

G = (V, E) {u, v} ∈ E
u v 1

