Math Basics for Asymptotic Analysis

Georg Hasebe, 22nd September.

1. Continuous Functions

- Functions that have no breaks, jumps, or holes.
- You can draw them without lifting your pen.

2. Differentiation

What it is: Differentiation is the process of finding the derivative of a function, which represents the rate of change of the function with respect to a variable.

Common Differentiation Rules:

- Power Rule: $\frac{d}{dx}(x^n) = n \cdot x^{n-1}$
- Sum Rule: $\frac{d}{dx}(f(x)+g(x))=f'(x)+g'(x)$
- Product Rule: $rac{d}{dx}(f(x)\cdot g(x))=f'(x)\cdot g(x)+f(x)\cdot g'(x)$
- Quotient Rule: $\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)\cdot g(x) f(x)\cdot g'(x)}{(g(x))^2}$
- Chain Rule: $\frac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)$

3. Limits

- Describes the value a function approaches as the input gets closer to a certain point.
- **Tending to infinity** is especially important in algorithms for understanding asymptotic behavior, e.g., how a function behaves as $n \to \infty$.

4. Limit Rules

Assuming the limits exists, we have:

- $ullet \ \lim_{n o\infty}(f(n)\pm g(n))=\lim_{n o\infty}f(n)\pm\lim_{n o\infty}g(n).$
- $\lim_{n o\infty}(c_1\cdot f(n)+c_2)=c_1\cdot (\lim_{n o\infty}f(n))+c_2$, for some constants c_1,c_2
- $ullet \lim_{n o\infty}f(n)\cdot g(n)=\lim_{n o\infty}f(n)\cdot \lim_{n o\infty}g(n).$
- $ullet \lim_{n o\infty}rac{f(n)}{g(n)}=rac{\lim_{n o\infty}f(n)}{\lim_{n o\infty}g(n)},$ if $\lim_{n o\infty}g(n)
 eq 0.$

5. Logarithms

- The inverse of exponentiation: $\log_b(x)$ answers the question: "To what power must b be raised to get x?". For example, to what power must 2 be raised to get 8? Answer: $\log_2(8) = 3$ times such that $2^{\log_2(8)} = 2^3 = 8$.
- The natural logarithm denoted by \ln has base e.

6. Logarithm Rules

- $\log_a(x \cdot y) = \log_a x + \log_a y$.
- $\log_a \frac{x}{y} = \log_a x \log_a y$.
- $\log_a x^n = n \cdot \log_a x$.
- $\log_a b = \frac{\log_c b}{\log_c a}$.
- $\log_a b = \frac{1}{\log_b a}$.

7. Exponents

• Express repeated multiplication: $a^n = a \cdot a \cdot \ldots \cdot a$ (n times)

8. Exponent Rules

- $ullet x^m \cdot x^n = x^{m+n}.$
- $\bullet \quad \frac{x^m}{x^n} = x^{m-n}.$
- $\bullet \ \ (x^m)^n=x^{m\cdot n}.$
- $ullet (x\cdot y)^n=x^n\cdot y^n ext{ and } \left(rac{x}{y}
 ight)^n=rac{x^n}{y^n}.$
- $x^0 = 1$.
- $\bullet \ \ x^{-n} = \frac{1}{x^n}.$
- $\bullet \quad x^{rac{m}{n}} = \sqrt[n]{x^m}.$

9. Big Sum and Product Notation

- Big Sum (Sigma Notation): $\sum_{i=m}^n a_i$ represents the sum of the terms a_i from index i=m to i=n. For example, $\sum_{i=1}^4 i=1+2+3+4=10$.
- Big Product (Pi Notation): $\prod_{i=m}^n a_i$ represents the product of the terms a_i from index i=m to i=n. For example, $\prod_{i=1}^4 i=1\cdot 2\cdot 3\cdot 4=24$.