
2024/12/09 — Georg Hasebe

Dynamic Programming
Algorithms and Data Structures

Georg Hasebe

Outline

1. Motivation Part

2. Theory Part

3. Implementation Part

4. CodeExpert Part

2

Motivation Part

Georg Hasebe

DP in the lecture

4

Naive

Better

Best

🎉

Georg Hasebe

DP in real life (at least for me)

5

🎉

Georg Hasebe

My notes from the CodeExpert exam

6

Today I want to simulate such a real life
situation, including mistakes and giving

tips along the way.

Theory Part

Georg Hasebe

Longest Palindromic Subsequence (LPS)

9

Georg Hasebe

Remark.

A common mistake is confusing substrings and subsequences.

For example, “XYZ” is a subsequence of “XAYBZ” but certainly not a substring.

The example from the problem description doesn’t show this
at all, since the solution they offer is which could be both substring and
subsequence!

Looking at other examples really helps!

S = "ETZHEEHU"
"HEEH"

10

Georg Hasebe

Looking at other examples really helps

11

Even the first example doesn’t help
us!

But the second example
“RTRREEUR” yields answer 4, so
the answer must be “RRRR”.

Now I'm sure what they want from
me.

Only after I am confident I understand
the problem do I start solving it.

Georg Hasebe

Remark.

When solving problems, we often build on the solutions of similar problems.

To improve at solving dynamic programming (DP) problems, it's important to
practice a wide variety of problems, including 1D, 2D, and even 3D DP
scenarios.

This diverse practice helps us develop the flexibility to quickly experiment with
different approaches during exams, increasing our chances of finding a solution
within the time constraints.

13

Georg Hasebe

A first attempt to solve LPS

Given some input string , we consider it character by character, from start to
finish.

S

14

 = “ E T Z H E E H U ”S

Georg Hasebe

Remark.

I will begin by exploring the problem using a concrete example.

The aim is to understand the structure of the subproblems and how they
connect, specifically how solving a smaller portion of the string can contribute to
solving a larger portion.

Along the way, not every observation will be useful — or even correct — but
each step helps us gather valuable insights.

15

Georg Hasebe

S = ETHZEBEHU

LPS of E?

Trivially 1.

LPS of ET?

Still 1.

LPS of ETH?

Still 1.

…

16

Georg Hasebe

S = ETHZEBEHU

LPS of ETHZE?

For the first time we observe a change in the LPS:

Since in ETHZE, the first E and last E match, we have a subsequence EE of
length 2. So the new answer is 2.

Taking any other character that lies in between EE, we get a palindrome of
length 3, e.g. ETE or EHE or EZE.

What did we learn from this?

Hypothesis: If the first and last characters match, the LPS increases.

17

Georg Hasebe

Remark.

Hypothesis: If the first and last characters match, the LPS increases.

This hypothesis is a valuable insight, but it remains a hypothesis until we verify
that it holds for any input string.

How do we confirm it? By stress-testing the hypothesis with additional examples
to see if it consistently works.

18

Georg Hasebe

Hypothesis: If the first and last characters match, the LPS increases.

LPS of ABB is 2, but appending B leads to LPS 3.

It seems, the second letter is also relevant for our LPS.

LPS of AXBB is 2, but appending B leads to LPS 3.

Third letter also relevant? And fourth, and fifth…?

Something feels off.

S = ABB + B

S = AXBB + B

19

Georg Hasebe

Remark.

Something feels off.

While our hypothesis is correct to some extent, it seems we need to account for
every letter at every position, and it’s not immediately clear how to do that.

So, what’s the underlying issue? Fundamentally, we’re missing some key
information.

But why is that?

20

Georg Hasebe

We’re missing some key information. But why is that?

By (linearly) appending the letter B as seen with the examples we
only consider B as the last letter of the subsequence!

Consider again. Take Z for example. Z can be at the end of a
subsequence (ETHZ), at the start (ZEBE) or even the middle (THZEB)!

So only considering Z at the end position won’t work!

S = ABB + B

S = ETHZEBEHU

21

Georg Hasebe

Remark.

In my experience, students often approach a DP problem by immediately trying
to construct a DP table bottom-up.

While this method can work in some cases, it’s not always the best approach. In
many situations, this strategy feels like forcing the problem into a predefined
framework, which may differ significantly from the structure of the actual
solution.

22

dis u?

Georg Hasebe

Remark.

In my opinion, a better starting point for solving a DP problem is to first deeply
understand the problem: identify the subproblems, how they depend on each
other, and how they collectively build up to the overall solution.

By approaching the problem this way, you are more likely to design a DP
strategy that aligns naturally with its structure — whether it’s bottom-up, top-
down with memoization, or a combination of both.

DP isn’t about mechanically filling in a table; it’s about uncovering and leveraging
the recurrence relationships that form the foundation of the solution.

23

Georg Hasebe

A second attempt to solve LPS

We abandoned the first approach where we considered each character one by
one. What now?

What did we learn from our first approach?

Recall our hypothesis that was correct to some extent: If the first and last
characters match, the LPS increases.

In other words, we don’t just care about individual characters, we care about
multiple characters, particularly those at the start and end. Let’s use this insight
as a new starting point.

24

Georg Hasebe

S = ETHZE

LPS of ETHZE?

Since the first and last character match (hypothesis), there was an increase in
our LPS.

But increase by how much exactly?

Let’s try to analyze the situation.

25

Georg Hasebe

In S = ETHZE, the matching subsequence, namely EE, forms something like a
frame of a potential palindrome, and what’s inside of this frame matters.

26

ETHZE E E→
Hypothesis 2: The LPS is the sum of the LPS of the gray box, and some
other number, that depends on if the first and last character match.

Georg Hasebe

Remark.

Hypothesis 2: The LPS is the sum of the LPS of the gray box, and some other
number, that depends on if the first and last character match.

As before, we try to confirm our hypothesis by stress-testing it with additional
examples to see if it consistently works.

27

Georg Hasebe

Hypothesis 2: The LPS is the sum of the LPS of the gray box, and some other
number, that depends on if the first and last character match.

How many cases do we have here?

1. LPS is LPS of E

2. LPS is LPS of X

3. LPS is LPS of

Let’s go over these cases and their relevance.

28

ETHZX E X→

Georg Hasebe

Always case 1?

1. LPS is LPS of E

Like earlier we try some examples.

, but LPS of ABBB is LPS of B. Contradiction.ABBB → A B

29

ETHZX E X→

Georg Hasebe

Always case 2?

2. LPS is LPS of X

, but LPS of BBBA is LPS of B . Contradiction.BBBA → B A

30

ETHZX E X→

Georg Hasebe

Always case 3?

3. LPS is LPS of .

Both the examples of case 1 and 2 are counterexample to case 3.

In retrospect, it didn’t make much sense to include this case, because all the
characters of the blue box are contained in both case 1 and 2. We omit case 3.

31

ETHZX E X→

Georg Hasebe

Summary

If , we know that the LPS will be the LPS of + 2.

If , then we showed that we must consider the LPS of both:

•

•

c1 = cn

c1 ≠ cn

c1

cn

LPS(ci cj) = {
LPS() + 2 if ci = cj,
max{LPS(ci), LPS(cj)} otherwise .

32

S = c1c2…cn−1cn → c1 cn

Georg Hasebe

Formalizing our Suspicions

Let and denote with the -th
character of .

For example, if , then is LPS of BC and (we use zero-
based indexing).

LPS(i, j) := "LPS of the substring from i to j." ci i
S

S = ABC LPS(1,2) c0 = A

33

cjci

LPS(i, j) = {
LPS(i + 1, j − 1) + 2 if ci = cj,
max{LPS(i, j − 1), LPS(i + 1, j)} otherwise .

Georg Hasebe

Remark.

At this point, we would naturally stress-test our recurrence to ensure its
correctness before diving into the implementation or filling in all six aspects
required in a theory exam. However, I’ll take the liberty of skipping this step here,
so you can assume the recurrence is correct.

What’s next? Now that we’ve defined suitable subproblems and established the
recurrence, we’ve essentially solved the DP problem. The rest is just about filling
in the details.

Still not convinced? Let’s walk through an example together.

34

Georg Hasebe

Let’s visualize the recursion on some string of length .

LPS(i, j) = {LPS(i + 1, j − 1) + 2 if ci = cj,
max{LPS(i, j − 1), LPS(i + 1, j)} otherwise .

S[0,…,3] 4

35

0,2 1,2

0,0 1,1

0,1

1,1 2,2 1,1 2,2 2,2 3,3

1,1 1,2 1,2 2,2 2,31,1 2,2

1,3

0,3

Georg Hasebe

Remark.

The nodes in this graph represent the subproblems. A parent subproblem is
connected to its child subproblems whenever the solution of the parent depends
on the solutions of the children. The root node is the final result.

Notice that the leaves of the graph correspond to the base cases — those
subproblems that do not depend on any others for their solution.

36

0,2 1,2

0,0 1,1

0,1

1,1 2,2 1,1 2,2 2,2 3,3

1,1 1,2 1,2 2,2 2,31,1 2,2

1,3

0,3

Georg Hasebe

Remark.

In other words, we now have all the key components needed to fully and
formally solve the DP problem.

At this point, we can decide whether to solve it top-down using memoization or
bottom-up using tabulation, depending on which approach suits the problem or
our preferences better.

37

0,2 1,2

0,0 1,1

0,1

1,1 2,2 1,1 2,2 2,2 3,3

1,1 1,2 1,2 2,2 2,31,1 2,2

1,3

0,3

Programming Part

Georg Hasebe

Implementing a solution

Suppose we decide to implement the solution using a bottom-up tabulation
approach. Let’s revisit the visualization of the subproblems from earlier. Is there a
natural way to transform this dependency structure into a table?

39

0,2 1,2

0,0 1,1

0,1

1,1 2,2 1,1 2,2 2,2 3,3

1,1 1,2 1,2 2,2 2,31,1 2,2

1,3

0,3

Georg Hasebe

Construction of a DP table

40

0,2

1,2

0,0

1,1

0,1

2,2

3,3

2,3

1,3

0,3

Georg Hasebe

One reason I chose this specific problem is that it’s likely unlike anything you’ve
encountered before. Now, let’s take a closer look at the table and compare it
with the earlier visualization. Notice that:

1. The lower left part of the table is simply left empty.

2. The base cases are stored in the diagonal.

3. Each diagonal depends on the lower diagonal.

41

0,2 1,2

0,0 1,1

0,1

1,1 2,2 1,1 2,2 2,2 3,3

1,1 1,2 1,2 2,2 2,31,1 2,2

1,3

0,3
0,2

1,2

0,0

1,1

0,1

2,2

3,3

2,3

1,3

0,3

Georg Hasebe

1. The lower left part of the table is simply left empty.

2. The base cases are stored in the diagonal.

3. Each diagonal depends on the diagonal below it.

How would a bottom-up “move” through such a table?

0,2 1,2

0,0 1,1

0,1

1,1 2,2 1,1 2,2 2,2 3,3

1,1 1,2 1,2 2,2 2,31,1 2,2

1,3

0,3
0,2

1,2

0,0

1,1

0,1

2,2

3,3

2,3

1,3

0,3

42

Georg Hasebe

Remark.

This diagonal movement can be tricky to implement, especially if you’re
encountering it for the first time. Before jumping into the implementation, let’s
take a step back and gather more information.

Understanding the structure of the table, the order of filling it, and how the
indices relate to our subproblems will make the implementation process much
smoother. Let’s break it down.

43

Georg Hasebe

DP table implementation

Moving down the diagonal simply increases
the row and column by one:

.

What happens in the second diagonal?

We introduce some initial offset :
.

What are the values for ?

.

(i, j) → (i + 1,j + 1)

L = 1
(i, L + j) → (i + 1,L + j + 1)

L

L ∈ {0,…,3} = {0,…, n − 1}

44

0,2

1,2

0,0

1,1

0,1

2,2

3,3

2,3

1,3

0,3

Georg Hasebe

DP table implementation

What are the values for

-th diagonal: to .

-st diagonal: to .

…

-th diagonal: to .

In other words:

-th diagonal: to .

i?

0 0 3

1 0 2

(n − 1) 0 0

L 0 (n − 1) − L

45

0,2

1,2

0,0

1,1

0,1

2,2

3,3

2,3

1,3

0,3

Georg Hasebe

DP table implementation

What are the values for ?

-th diagonal: to .

-st diagonal: to .

…

-th diagonal: to .

In other words:

-th diagonal: to .

j

0 0 3

1 1 3

(n − 1) 3 3

L 0 + L (n − 1)

46

0,2

1,2

0,0

1,1

0,1

2,2

3,3

2,3

1,3

0,3

Georg Hasebe

DP table implementation

Summary for the -th diagonal:

Movement:

.

Values for :

 to .

Values for :

 to .

where .

L

(i, L + j) → (i + 1,L + j + 1)

i

0 (n − 1) − L

j

0 + L (n − 1)

L ∈ {0,…, n − 1}

47

0,2

1,2

0,0

1,1

0,1

2,2

3,3

2,3

1,3

0,3

CodeExpert Part

Georg Hasebe 49

💯💯✅🗣🗣🔝🧠🦾🎓🎓

Georg Hasebe

POV: CodeExpert Exam

50

Georg Hasebe

Dynamic Programming Summary

Dynamic Programming (DP) is a problem-solving approach that involves breaking a problem into smaller, overlapping subproblems and building up
solutions systematically. To effectively solve a DP problem, follow these steps:

• Understand the Problem: Begin by deeply understanding the problem. Work through several concrete examples to get a sense of the subproblems,
their dependencies, and how they combine to form the overall solution.

• Don’t Jump to Bottom-Up: Avoid starting directly with a bottom-up tabulation approach. Instead, focus on grasping the problem’s structure before
choosing an implementation strategy.

• Define Subproblems and Recurrence: Identify the subproblems and formulate the recurrence relationships that connect them. These are the core
of your solution and must be clear before proceeding.

• Stress-Test Your Recurrence: Validate your recurrence by stress-testing it with different examples to ensure its correctness for all input scenarios.

• Don’t Force a Structure: Avoid trying to fit the problem into a framework or schema that isn’t suitable. Let the problem naturally guide the structure
of your DP approach.

• Choose an Implementation: Depending on the problem and recurrence, decide whether to solve it top-down with memoization or bottom-up with
tabulation. If using tabulation, think carefully about how to translate subproblem dependencies into a table and the order of filling it.

• Practice Regularly: Solving DP problems requires practice. Work through a variety of problems (1D, 2D, and 3D DP) to gain flexibility and
confidence. This practice will prepare you to experiment and adapt during exams.

• Stay Flexible: If one approach isn’t working, don’t get stuck. Be open to revisiting the problem and exploring alternative strategies.

By following these principles, you’ll develop a strong foundation in dynamic programming and build the skills needed to tackle even the most
challenging problems efficiently.

51

(*) Also available as a PDF on my website.

