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DP in the lecture
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Naive
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DP in real life (at least for me)
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My notes from the CodeExpert exam
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Today I want to simulate such a real life 
situation, including mistakes and giving 

tips along the way.
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Longest Palindromic Subsequence (LPS)
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Remark.

A common mistake is confusing substrings and subsequences. 

For example, “XYZ” is a subsequence of “XAYBZ” but certainly not a substring. 

The example  from the problem description doesn’t show this 
at all, since the solution they offer is  which could be both substring and 
subsequence! 

Looking at other examples really helps!

S = "ETZHEEHU"
"HEEH"
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Looking at other examples really helps
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Even the first example doesn’t help 
us! 

But the second example 
“RTRREEUR” yields answer 4, so 
the answer must be “RRRR”. 

Now I'm sure what they want from 
me.



Only after I am confident I understand 
the problem do I start solving it.
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Remark.

When solving problems, we often build on the solutions of similar problems.  

To improve at solving dynamic programming (DP) problems, it's important to 
practice a wide variety of problems, including 1D, 2D, and even 3D DP 
scenarios.  

This diverse practice helps us develop the flexibility to quickly experiment with 
different approaches during exams, increasing our chances of finding a solution 
within the time constraints.
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A first attempt to solve LPS

Given some input string , we consider it character by character, from start to 
finish.

S

14

 = “ E T Z H E E H U ”S
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Remark.

I will begin by exploring the problem using a concrete example.  

The aim is to understand the structure of the subproblems and how they 
connect, specifically how solving a smaller portion of the string can contribute to 
solving a larger portion.  

Along the way, not every observation will be useful — or even correct — but 
each step helps us gather valuable insights.
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S = ETHZEBEHU

LPS of E?


Trivially 1. 

LPS of ET?


Still 1. 

LPS of ETH?


Still 1. 

…
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S = ETHZEBEHU

LPS of ETHZE?


For the first time we observe a change in the LPS:  

Since in ETHZE, the first E and last E match, we have a subsequence EE of 
length 2. So the new answer is 2. 

Taking any other character that lies in between EE, we get a palindrome of 
length 3, e.g. ETE or EHE or EZE. 

What did we learn from this? 

Hypothesis: If the first and last characters match, the LPS increases. 

17



Georg Hasebe

Remark.

Hypothesis: If the first and last characters match, the LPS increases.  

This hypothesis is a valuable insight, but it remains a hypothesis until we verify 
that it holds for any input string.  

How do we confirm it? By stress-testing the hypothesis with additional examples 
to see if it consistently works.
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Hypothesis: If the first and last characters match, the LPS increases. 

 

LPS of ABB is 2, but appending B leads to LPS 3.


It seems, the second letter is also relevant for our LPS. 

 

LPS of AXBB is 2, but appending B leads to LPS 3.


Third letter also relevant? And fourth, and fifth…? 

Something feels off.

S = ABB + B

S = AXBB + B
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Remark.

Something feels off.  

While our hypothesis is correct to some extent, it seems we need to account for 
every letter at every position, and it’s not immediately clear how to do that.  

So, what’s the underlying issue? Fundamentally, we’re missing some key 
information.  

But why is that?
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We’re missing some key information. But why is that?

By (linearly) appending the letter B as seen with the examples  we 
only consider B as the last letter of the subsequence!


Consider  again. Take Z for example. Z can be at the end of a 
subsequence (ETHZ), at the start (ZEBE) or even the middle (THZEB)! 


So only considering Z at the end position won’t work! 

S = ABB + B

S = ETHZEBEHU
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Remark.

In my experience, students often approach a DP problem by immediately trying 
to construct a DP table bottom-up.  

While this method can work in some cases, it’s not always the best approach. In 
many situations, this strategy feels like forcing the problem into a predefined 
framework, which may differ significantly from the structure of the actual 
solution.
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Remark.

In my opinion, a better starting point for solving a DP problem is to first deeply 
understand the problem: identify the subproblems, how they depend on each 
other, and how they collectively build up to the overall solution.  

By approaching the problem this way, you are more likely to design a DP 
strategy that aligns naturally with its structure — whether it’s bottom-up, top-
down with memoization, or a combination of both.  

DP isn’t about mechanically filling in a table; it’s about uncovering and leveraging 
the recurrence relationships that form the foundation of the solution.
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A second attempt to solve LPS

We abandoned the first approach where we considered each character one by 
one. What now? 

What did we learn from our first approach? 

Recall our hypothesis that was correct to some extent: If the first and last 
characters match, the LPS increases. 

In other words, we don’t just care about individual characters, we care about 
multiple characters, particularly those at the start and end. Let’s use this insight 
as a new starting point.
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S = ETHZE

LPS of ETHZE?


Since the first and last character match (hypothesis), there was an increase in 
our LPS. 

But increase by how much exactly? 

Let’s try to analyze the situation.
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In S = ETHZE, the matching subsequence, namely EE, forms something like a 
frame of a potential palindrome, and what’s inside of this frame matters.
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ETHZE  E       E→
Hypothesis 2: The LPS is the sum of the LPS of the gray box, and some 
other number, that depends on if the first and last character match.
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Remark.

Hypothesis 2: The LPS is the sum of the LPS of the gray box, and some other 
number, that depends on if the first and last character match. 

As before, we try to confirm our hypothesis by stress-testing it with additional 
examples to see if it consistently works.
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Hypothesis 2: The LPS is the sum of the LPS of the gray box, and some other 
number, that depends on if the first and last character match.

How many cases do we have here?


1. LPS is LPS of E 


2. LPS is LPS of         X


3. LPS is LPS of 


Let’s go over these cases and their relevance.
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Always case 1?

1.  LPS is LPS of E 


Like earlier we try some examples.


, but LPS of ABBB is LPS of         B. Contradiction.ABBB → A        B
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ETHZX  E       X→
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Always case 2?

2.  LPS is LPS of        X 


, but LPS of BBBA is LPS of B        . Contradiction.BBBA → B        A
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ETHZX  E       X→
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Always case 3?

3.  LPS is LPS of        .


Both the examples of case 1 and 2 are counterexample to case 3.


In retrospect, it didn’t make much sense to include this case, because all the 
characters of the blue box are contained in both case 1 and 2. We omit case 3.
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Summary

If , we know that the LPS will be the LPS of            + 2.


If , then we showed that we must consider the LPS of both:


•  


•            


c1 = cn

c1 ≠ cn

c1

cn

LPS(ci cj) = {
LPS( ) + 2 if ci = cj,
max{LPS(ci ), LPS( cj)} otherwise .

32

S = c1c2…cn−1cn → c1 cn
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Formalizing our Suspicions

Let  and denote with  the -th 
character of .


For example, if , then  is LPS of BC and  (we use zero-
based indexing).

LPS(i, j) := "LPS of the substring from i to j." ci i
S

S = ABC LPS(1,2) c0 = A

33

cjci

LPS(i, j) = {
LPS(i + 1, j − 1) + 2 if ci = cj,
max{LPS(i, j − 1), LPS(i + 1, j)} otherwise .
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Remark.

At this point, we would naturally stress-test our recurrence to ensure its 
correctness before diving into the implementation or filling in all six aspects 
required in a theory exam. However, I’ll take the liberty of skipping this step here, 
so you can assume the recurrence is correct. 

What’s next? Now that we’ve defined suitable subproblems and established the 
recurrence, we’ve essentially solved the DP problem. The rest is just about filling 
in the details. 

Still not convinced? Let’s walk through an example together.

34



Georg Hasebe




Let’s visualize the recursion on some string  of length .

LPS(i, j) = {LPS(i + 1, j − 1) + 2 if ci = cj,
max{LPS(i, j − 1), LPS(i + 1, j)} otherwise .

S[0,…,3] 4
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Remark.

The nodes in this graph represent the subproblems. A parent subproblem is 
connected to its child subproblems whenever the solution of the parent depends 
on the solutions of the children. The root node is the final result. 

Notice that the leaves of the graph correspond to the base cases — those 
subproblems that do not depend on any others for their solution.
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Remark.

In other words, we now have all the key components needed to fully and 
formally solve the DP problem.  

At this point, we can decide whether to solve it top-down using memoization or 
bottom-up using tabulation, depending on which approach suits the problem or 
our preferences better.
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Implementing a solution

Suppose we decide to implement the solution using a bottom-up tabulation 
approach. Let’s revisit the visualization of the subproblems from earlier. Is there a 
natural way to transform this dependency structure into a table?
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Construction of a DP table
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One reason I chose this specific problem is that it’s likely unlike anything you’ve 
encountered before. Now, let’s take a closer look at the table and compare it 
with the earlier visualization. Notice that:


1. The lower left part of the table is simply left empty.


2. The base cases are stored in the diagonal.


3. Each diagonal depends on the lower diagonal.
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1. The lower left part of the table is simply left empty.


2. The base cases are stored in the diagonal.


3. Each diagonal depends on the diagonal below it.


How would a bottom-up “move” through such a table?

0,2 1,2

0,0 1,1

0,1

1,1 2,2 1,1 2,2 2,2 3,3

1,1 1,2 1,2 2,2 2,31,1 2,2

1,3

0,3
0,2

1,2

0,0

1,1

0,1

2,2

3,3

2,3

1,3

0,3
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Remark.

This diagonal movement can be tricky to implement, especially if you’re 
encountering it for the first time. Before jumping into the implementation, let’s 
take a step back and gather more information.  

Understanding the structure of the table, the order of filling it, and how the 
indices relate to our subproblems will make the implementation process much 
smoother. Let’s break it down.
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DP table implementation

Moving down the diagonal simply increases 
the row and column by one:


.


What happens in the second diagonal?


We introduce some initial offset : 
.


What are the values for ?


.

(i, j) → (i + 1,j + 1)

L = 1
(i, L + j) → (i + 1,L + j + 1)

L

L ∈ {0,…,3} = {0,…, n − 1}
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DP table implementation

What are the values for 


-th diagonal:  to .


-st diagonal:  to .


…


-th diagonal:  to .


In other words:


-th diagonal:  to .

i?

0 0 3

1 0 2

(n − 1) 0 0

L 0 (n − 1) − L
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DP table implementation

What are the values for ?


-th diagonal:  to .


-st diagonal:  to .


…


-th diagonal:  to .


In other words:


-th diagonal:  to .

j

0 0 3

1 1 3

(n − 1) 3 3

L 0 + L (n − 1)
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DP table implementation

Summary for the -th diagonal:


Movement:


.


Values for :


 to .


Values for :


 to .


where .

L

(i, L + j) → (i + 1,L + j + 1)

i

0 (n − 1) − L

j

0 + L (n − 1)

L ∈ {0,…, n − 1}
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POV: CodeExpert Exam
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Dynamic Programming Summary

Dynamic Programming (DP) is a problem-solving approach that involves breaking a problem into smaller, overlapping subproblems and building up 
solutions systematically. To effectively solve a DP problem, follow these steps:


• Understand the Problem: Begin by deeply understanding the problem. Work through several concrete examples to get a sense of the subproblems, 
their dependencies, and how they combine to form the overall solution.


• Don’t Jump to Bottom-Up: Avoid starting directly with a bottom-up tabulation approach. Instead, focus on grasping the problem’s structure before 
choosing an implementation strategy.


• Define Subproblems and Recurrence: Identify the subproblems and formulate the recurrence relationships that connect them. These are the core 
of your solution and must be clear before proceeding.


• Stress-Test Your Recurrence: Validate your recurrence by stress-testing it with different examples to ensure its correctness for all input scenarios.


• Don’t Force a Structure: Avoid trying to fit the problem into a framework or schema that isn’t suitable. Let the problem naturally guide the structure 
of your DP approach.


• Choose an Implementation: Depending on the problem and recurrence, decide whether to solve it top-down with memoization or bottom-up with 
tabulation. If using tabulation, think carefully about how to translate subproblem dependencies into a table and the order of filling it.


• Practice Regularly: Solving DP problems requires practice. Work through a variety of problems (1D, 2D, and 3D DP) to gain flexibility and 
confidence. This practice will prepare you to experiment and adapt during exams.


• Stay Flexible: If one approach isn’t working, don’t get stuck. Be open to revisiting the problem and exploring alternative strategies.


By following these principles, you’ll develop a strong foundation in dynamic programming and build the skills needed to tackle even the most 
challenging problems efficiently.
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(*) Also available as a PDF on my website.


