
Algorithms and Data Structures Week 13
Georg Hasebe, 9th December.

Dynamic Programming Summary
Dynamic Programming (DP) is a problem-solving approach that involves breaking a
problem into smaller, overlapping subproblems and building up solutions systematically.

Understand the Problem: Begin by deeply understanding the problem. Work through
several concrete examples to get a sense of the subproblems, their dependencies, and
how they combine to form the overall solution.
Don’t Jump to Bottom-Up: Avoid starting directly with a bottom-up tabulation
approach. Instead, focus on grasping the problem’s structure before choosing an
implementation strategy.
Define Subproblems and Recurrence: Identify the subproblems and formulate the
recurrence relationships that connect them. These are the core of your solution and
must be clear before proceeding.

Stress-Test Your Recurrence: Validate your recurrence by stress-testing it with
different examples to ensure its correctness for all input scenarios.
Don’t Force a Structure: Avoid trying to fit the problem into a framework or schema
that isn’t suitable (recall the star into square analogy). Let the problem naturally guide
the structure of your DP approach.
Choose an Implementation: Depending on the problem and recurrence, decide
whether to solve it top-down with memoization or bottom-up with tabulation. If using
tabulation, think carefully about how to translate subproblem dependencies into a table
and the order of filling it.

Practice Regularly: Solving DP problems requires practice. Work through a variety of
problems (1D, 2D, and 3D DP) to gain flexibility and confidence. This practice will
prepare you to experiment and adapt during exams.
Stay Flexible: If one approach isn’t working, don’t get frustrated. Be open to revisiting
the problem and exploring alternative strategies.


