
Dynamic Programming
Georg Hasebe

DP in the lecture

Naive

Better

Best

🎉

DP in real life (at least for me)

🎉

My notes from the CodeExpert Exam

Today I want to simulate such a real
life situation, including mistakes

and giving tips along the way.

Longest Palindromic
Subsequence (LPS)

Problem Description
A palindrome is a sequence of characters which reads the same backward
as forward, e.g., “level”, “noon”,“racecar”.

Given a sequence of characters, your task is to compute the length of
the longest palindromic subsequence of , i.e., the length of the longest
subsequence of A that is a palindrome.

For instance, if , is the longest palindromic
subsequence of , and its length is 4.

A n
A

A = "ETZHEEHU" "HEEH"
A

Remarks
• This exercise was part of the HS20 Summer CodeExpert Exam

• would give 16/16 points and would give 6/16 points.

• The input array A is indexed from 0, and all characters are capitals.

O(n2) O(2n)

Do I understand the problem?
A common mistake is confusing substrings and subsequences

For example, “XYZ” is a subsequence of “XAYBZ” but certainly not a
substring

The example doesn’t show this at all, since the solution
they offer is which could be both substring and subsequence!

Looking at other examples really helps

A = "ETZHEEHU"
"HEEH"

Other examples
After trying the first two examples
and seeing that the second
example “RTRREEUR” yields
answer 4, I notice that the answer
must be “RRRR”.

Only after I am confident I
understand the problem do I start

solving it.

Problem Solving
• Often times when solving problems, we rely on solutions of similar

problems

• To get better at solving DP problems, we want to practice using different
kinds of problems

Similarities?

Similarities

A = [16, 4, 2, 7, 11, 1]

Similarities

A = [16, 4, 2, 7, 11, 1]

S = “ 0 1 0 1 1 0 1 0 0 1 1 ”

Similarities
• We consider elements of the array or characters of the string one by one

from start to finish

• Other examples: Subset Sum, Minimum Editing Distance, Knapsack…

CONCLUSION

we try the same approach on LPS

S = “ E T Z H E E H U ”

Using this conclusion, I will start familiarizing myself
with the problem by considering a concrete example.

The goal is to get a feeling for how the subproblems
relate to each other, i.e. how a shorter portion of the
string can help me construct a solution for a larger

portion of the string.

First Approach

S = ETHZEBEHU

LPS of E?

Trivially 1.

LPS of ET?

Still 1.

LPS of ETH?

Still 1.

…

S = ETHZEBEHU

LPS of ETHZE?

For the first time we observe a change in the LPS. Since E and E are
equivalent, we have a subsequence EE of length 2. Taking any other
character that lies in between EE, we get a palindrome of length 3, e.g. ETE.
Thus we have LPS is 3.

What did we learn from this?

Suspicion: If first and last character match, we increase the LPS.

In order to try and verify our
suspicion we try other examples

Trying multiple examples is generally a good idea when
solving a problem.

Every example has its (sometimes unique) properties that can
potentially limit our thinking.

Suspicion: If first and last character match, we increase the LPS.

LPS of ABB is 2, but appending B leads to LPS 3.

It seems, the second letter is also relevant for our LPS.

LPS of AXBB is 2, but appending B leads to LPS 3.

Third letter also relevant?

Something feels off.

S = ABB + B

S = AXBB + B

Something feels off. But what?

By (linearly) appending the letter B as seen with the examples
and we only consider B as the last letter of the
subsequence!

Consider again. Take Z for example. Z can be at the end
of a subsequence (ETHZ), at the start (ZEBE) or even the middle (THZEB)!

So only considering Z at the end position won’t work!

S = ABB + B
S = AXBB + B

S = ETHZEBEHU

Something feels off. But what?

Students often start to solve a DP problem by attempting to build a DP table
bottom up.

Possible Reasons:

1. Iterative approach might feel more intuitive than recursive approach.

2.

Is this a correct approach?

Build Table Design Recurrence

In my opinion: NO!

How else?

Build Table

Find Recurrence

Memoization

Bottom-Up

Top-Down

Instead of finding/designing the recurrence by
attempting to build a DP table — or trying to do both at

the same time — first find/design the recurrence and
only then start building a table (or using memoization).

Second Approach

Recall the definition of DP:

DP refers to simplifying a complicated problem by breaking
it down into simpler sub-problems in a recursive manner.

Recall Fibonacci

S = ETHZE

LPS of ETHZE?

As we have discussed earlier, since the first and last character match, there
was an increase in our LPS.

But increase by how much exactly?

Let’s try to visualize the situation.

ETHZE

MATCH!

The matching subsequence, namely EE, is of length 2.

ETHZE E E→
Suspicion: If we take the LPS of the blue box, we can simply add 2 to it
and we end up with the LPS of ETHZE.

But what if the first and last character do not match?

ETHZX E X→
There are only 3 options here:

1. LPS is LPS of E

2. LPS is LPS of X

3. LPS is LPS of

Suspicion: Maybe it’s 1.

Suspicion: Case 1. ETHZX E X→
1. LPS is LPS of E

Like earlier we try some examples.

, but LPS of ABBB is LPS of B. Contradiction.ABBB → A B

Suspicion: Case 2. ETHZX E X→
2. LPS is LPS of X

, but LPS of BBBA is LPS of B . Contradiction.BBBA → B A

Suspicion: Case 3. ETHZX E X→
3. LPS is LPS of .

Both the examples of case 1 and 2 are counterexample to case 3.

In retrospect, it didn’t make much sense to include this case, because all the
characters of the blue box are contained in both case 1 and 2. We omit case
3.

Summary of our suspicions

• If the first and last character match, we suspect that the LPS will be the
LPS of + 2.

• If they don’t match, then we suspect the LPS will be the greater LPS out
of LPS of E and .

Let’s try to formalize our suspicions.

⎵

ETHZ E ⎵ → ⎵

Formalizing our suspicions

Let

For example, if , then is LPS of BC. (We use zero-based
indexing)

Using our suspicions from earlier, we get:

LPS(i, j) := "LPS of the substring from i to j."

S = ABC LPS(1,2)

LPS(i, j) = {LPS(i + 1, j − 1) + 2 if character at i and j match
max{LPS(i, j − 1), LPS(i + 1, j)} else

Consider an arbitrary example string S[0…3] of length 4. The nodes with
caption x,y stand for LPS(x,y).

0,3

0,2

0,1 1,1 1,2

0,0 1,1 1,1 2,2

1,3

1,2 2,2 2,3

1,1 2,2 2,2 3,3

1,2

1,1 2,2

Notice how the leaves are the base cases. If we build the table starting from
the leaves and working our way up to the root 0,3 we end up calculating
LPS(0,3), which is the answer to our problem. By starting at the leaves and
working our way up this way, we get access to the answers of all the
relevant sub-problems.

0,3

0,2

0,1 1,1 1,2

0,0 1,1 1,1 2,2

1,3

1,2 2,2 2,3

1,1 2,2 2,2 3,3

1,2

1,1 2,2

Now how exactly do we build a table from this? Notice the labels of
each node.

0,3

0,2

0,1 1,1 1,2

0,0 1,1 1,1 2,2

1,3

1,2 2,2 2,3

1,1 2,2 2,2 3,3

1,2

1,1 2,2

0,30,20,1

1,1 1,2

0,0

1,11,1

2,2

1,31,2

2,2 2,3

1,1

2,22,2

3,3

1,21,1

2,2

🎉🎉

By treating the labels x,y as matrix entries, where x is the row and y is
the column, 2D table.

Notice how the diagonal holds the base cases and we build a upper
triangular matrix starting from the diagonal. The lower triangular matrix
is simply left empty.

0,30,20,1

1,1 1,2

0,0

2,2

1,3

2,3

3,3

6 ASPECTS
(left as an exercise to the reader)

CodeExpert Part

First solve, then code:

Solution CodeExpert

Translation

But how do we implement LPS?

How do we implement the upper triangular
matrix DP table?

How do we implement the upper triangular matrix
DP table?

0,30,20,1

1,1 1,2

0,0

2,2

1,3

2,3

3,3

We move diagonal
by diagonal!
(Think of the tree
structure)

How do we implement the upper triangular matrix
DP table?

0,30,20,1

1,1 1,2

0,0

2,2

1,3

2,3

3,3

What changes when we go up in
diagonals? (with respect to the
string we are considering)

Length of the substring!

1

2

3

4

How do we implement the upper triangular matrix
DP table?

0,30,20,1

1,1 1,2

0,0

2,2

1,3

2,3

3,3

How do the indices behave?

Notice always starts at 0 and gets
incremented. On the other hand,
starts off as but gets increasingly
further away from .

How does that relate to earlier?

 are roughly length of substring of
the respective diagonal apart.

i, j

i
j

i
i

i, j

i, j

Let’s do some coding

Reference are roughly length of substring
of the respective diagonal apart.
i, ji, j

0,30,20,1

1,1 1,2

0,0

2,2

1,3

2,3

3,3

Length of the substring!
1 2 3 4

, if
letters at and match.

if letters at and don’t match.

LPS(i, j) = LPS(i + 1, j − 1) + 2
i j

LPS(i, j) = max{LPS(i, j − 1), LPS(i + 1, j)}
i j

0,3

0,2

0,1 1,1 1,2

0,0 1,1 1,1 2,2

1,3

1,2 2,2 2,3

1,1 2,2 2,2 3,3

1,2

1,1 2,2

💯💯✅🤑💪💪🥵🥵🧠🧠🦾🦾🎓🎓

POV: CodeExpert Exam

Summary
• We learned how to solve LPS

• We learned how to approach/solve DP problems

• We learned how to implement LPS

Slides and code will be
available on my website.

