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The solutions for this sheet are submitted at the beginning of the exercise class on 13 November 2023.
Exercises that are marked by * are challenge exercises. They do not count towards bonus points.

You can use results from previous parts without solving those parts.

Exercise 7.1  1-3 subset sums (1 point).

Let A[l,...,n] be an array containing n positive integers, and let b € N. We want to know if there
exists a subset I C {1,2,...,n}, together with multipliers ¢; € {1,3}, ¢ € I such that:

b= ¢ - Alil.
iel
If this is possible, we say b is a 1-3 subset sum of A. For example, if A = [16,4,2,7,11,1] and b = 61,
we could write b =3-16+4+3-24+3-1.

Describe a DP algorithm that, given an array A[l, ..., n| of positive integers, and a positive integer
b € N returns True if and only if b is a 1-3 subset sum of A. Your algorithm should have asymptotic
runtime complexity at most O(b - n).

In your solution, address the following aspects:
1. Dimensions of the DP table: What are the dimensions of the D P table?
2. Subproblems: What is the meaning of each entry?

3. Recursion: How can an entry of the table be computed from previous entries? Justify why your
recurrence relation is correct. Specify the base cases of the recursion, i.e., the cases that do not
depend on others.

4. Calculation order: In which order can entries be computed so that values needed for each entry have
been determined in previous steps?

5. Extracting the solution: How can the solution be extracted once the table has been filled?

6. Running time: What is the running time of your solution?

Exercise 7.2 Road trip.

You are planning a road trip for your summer holidays. You want to start from city Cp, and follow the
only road that goes to city C,, from there. On this road from Cj to C),, there are n — 1 other cities
C1,...,Cy_1 that you would be interested in visiting (all cities C1, . .., C),_; are on the road from Cj
to Cy). For each 0 < ¢ < n, the city Cj is at kilometer k; of the road for some given 0 = ko < k1 <
e < kp_q1 < ky,.



You want to decide in which cities among (', . . ., C;,—1 you will make an additional stop (you will stop
in Cy and C,, anyway). However, you do not want to drive more than d kilometers without making a
stop in some city, for some given value d > 0 (we assume that k; < k;—; + d for all i € [n] so that
this is satisfiable), and you also don’t want to travel backwards (so from some city C; you can only go
forward to cities C; with j > 7).

(a) Provide a dynamic programming algorithm that computes the number of possible routes from C to
C,, that satisfy these conditions, i.e., the number of allowed subsets of stop-cities. Your algorithm
should have O(n?) runtime.

Address the same six aspects as in Exercise 7.1 in your solution.

(b) If you know that k; > k;_1 + d/10 for every ¢ € [n], how can you turn the above algorithm into a
linear time algorithm (i.e., an algorithm that has O(n) runtime) ?

Exercise 7.3  Safe pawn lines.

On an N x M chessboard (/N being the number of rows and M the number of columns), a safe pawn
line is a set of M pawns with exactly one pawn per column of the chessboard, and such that every two
pawns from adjacent columns are located diagonally to each other. When a pawn line is not safe, it is
called unsafe.

The first two chessboards below show safe pawn lines, the latter two unsafe ones. The line on the third
chessboard is unsafe because pawns d4 and e4 are located on the same row (rather than diagonally);
the line on the fourth chessboard is unsafe because pawn a5 has no diagonal neighbor at all.
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Describe a DP algorithm that, given N, M > 0, counts the number of safe pawn lines on an N x M
chessboard. In your solution, address the same six aspects as in Exercise 7.1. Your solution should have
complexity at most O(NM).

Exercise 7.4  String counting (1 point).

Given a binary string S € {0,1}" of length n, let f(S) be the number of times “11” occurs in the
string, i.e. the number of times a 1 is followed by another 1. In particular, the occurrences do not need
to be disjoint. For example f(“111011”) = 3 because the string contains three 1 that are followed by
another 1 (underlined). Given n and k, the goal is to count the number of binary strings S of length n

with f(S) = k.

Describe a DP algorithm that, given positive integers n and k£ with & < n, reports the required number.
In your solution, address the same six aspects as in Exercise 7.1. Your solution should have complexity
at most O(nk).



Hint: Define a three dimensional DP table DP[1...n][0...k][0...1].

Hint: The entry DP[i][j][l] counts the number of strings of length i with j occurrences of “11” that end
inl (wherel <i<n,0<j<kand0<I[<1)

Exercise 7.5  Approximately solving knapsack (1 point).

Consider a knapsack problem with n items with values v; € N and weightsw; € Nfori € {1,2,...,n},
and weight limit W € N. Assume! that wyay := maxi<ij<p w; < W and also that W < Z?’:l w.

For a set of items I C {1,2,...,n}, we write v(I) = >, ; v; and w(I) = ), ; w; for the total value
(resp. weight) of I. So, the solution to a knapsack problem is given by

opt :=max{v(l): I C{1,2,...,n}, w(l)<W}.

Lete > 0. We say a set of items I C {1,2,...,n} is e-feasible if it violates the weight limit by at most
a factor 1 + ¢, that is, if
wl) < (1+¢)-W.

In this exercise, we construct an algorithm that finds an e-feasible set I with v(/) > opt in polynomial
time in n and 1/e.

(a) Let k € N. Consider a ‘rounded version’ of the knapsack problem above obtained by replacing the
weights w; by:
—~ ws;
w; = k - {*J .

k

Recall the dynamical programming algorithm you have seen in the lecture which solves the knapsack
problem in time O(n - W). Explain how to modify this algorithm to solve the ‘rounded version’ in
time O ((W/k) - n). For simplicity, you may assume that ¥ is an integer multiple of & for this part.

Hint: After rounding, all the w; are integer multiples of k. Use this to reduce the number of table
entries you have to compute in the dynamical programming algorithm.

We write opt;, for the optimum solution value of the rounded problem in part (a). From now on, you
may assume that your modified algorithm also returns a set I}, with v(I)) = opty and } ;. ; w; < W.

(b) Explain why opt;, > opt.
(c) Sete := (nk)/wmax. Show that w(I;) < (1 + ¢) - W, that is, show that I}, is e-feasible.

Hint: Show that w; < w; + k for eachi € {1,2,...,n}. We know that ) ,.; w; < W. Combine
these facts to show that w(Iy) := > ..; w; < W + n - k. Finally, use the fact that W/wpax > 1 to
conclude your proof.

i€l

(d) Now let ¢ > 0 be arbitrary. Describe an algorithm that finds an e-feasible set I of items with
v(I) > opt in time O(n?/e). Prove the runtime guarantee and correctness of your algorithm.

Hint: Apply the algorithm of part (a) to the rounded problem with k = (Wmax - €)/n. For simplicity,
you may assume that this k is an integer in your proof. Then, use the assumption that W < > "7 | w;
(< M - Wmax) to bound the runtime of the algorithm in terms of n and 1/¢. Finally, use part (b) and
part (c) to show correctness.

"Why are these assumptions reasonable?



(e)* Lete = 1/100. Give an example of a knapsack problem which has an e-feasible solution I with
value
v(I) =2 - opt,

Your example should satisfy wmax < Wand W < Z?:l w;.



Exercise 7.1  1-3 subset sums (1 point).

Let A[1,...,n| be an array containing n positive integers, and let b € N. We want to know if there
exists a subset I C {1,2,...,n}, together with multipliers ¢; € {1,3}, i € I such that:

i€l

If this is possible, we say b is a 1-3 subset sum of A. For example, if A = [16,4,2,7,11,1] and b = 61,
we could writeb=3-16+4+3-24+3- 1.

Describe a DP algorithm that, given an array A[l,...,n] of positive integers, and a positive integer
b € N returns True if and only if b is a 1-3 subset sum of A. Your algorithm should have asymptotic
runtime complexity at most O(b - n).
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1. Dimensions of the DP table: DP[0...n][0...b] (('("’\ t )

2. Subproblems: D P|a][s] is True if, and only if, s can be written as a sum ) ;. ¢; - A[¢] where I C {3 :
1<i<a},and¢; € {1,3} foreachi € I.
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3. Recursion: DP can be computed recursively as follows:
DPI0][s] = False 1<s<b (1) (4)
DP|a][0] = True 0<a<b () (1)

——

c—
G- 3.2) (3.2) 1<s<hb.

[Note that in equation (3), the entries ‘DP[a — 1][s — Ala]]’ and ‘D P[a — 1][s — 3 - A[a]]’ might fall
Q outside the range of the table, in which case we treat them as False.
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4. Calculation order: Following the recurrence relations above, we compute first by order of increas-

ing a, and then by increasing order of s.

5. Extracting the solution: The solution can be found in D P[n][b], by part 2.

6. Running time: The running time of the solution is O(nb) as there are (n + 1) - (b + 1) = O(nb)
entries in the table, each entry requires O(1) time to compute, and we extract the solution in O(1)

time.



Exercise 7.4  String counting (1 point).

Given a binary string S € {0,1}" of length n, let f(S) be the number of times “11” occurs in the
string, i.e. the number of times a 1 is followed by another 1. In particular, the occurrences do not need
to be disjoint. For example f(“111011”) = 3 because the string contains three 1 that are followed by
another 1 (underlined). Given n and k, the goal is to count the number of binary strings S of length n

with £(S) = k.

Describe a DP algorithm that, given positive integers n and k with k& < n, reports the required number.
In your solution, address the same six aspects as in Exercise 7.1. Your solution should have complexity
at most O(nk).

(<) Hint: Define a three dimensional DP table DP[1...n][0...k][0...1].

Hint: The entry DPJi][j][l] counts the number of strings of length © with j occurrences of “11” that end
inl (wherel<i<n,0<j<kand0<I<1)
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1. Dimensions of the DP table: DP[1...n][0...k][0...1].

2. Subproblems: The entry D P[i][j][l] describes the number of strings of length 7 with j occurrences
of “11” that end in [.
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3. Recursion: The base cases for i = 1 are given by DP[1][0][0] = 1 (the string “0”), DP[1][0][1] =1
(the string “1”), D P[1][4][0] = 0 and DP[1][j][1] = 0 for 1 < j < k. The update rule is as follows:
For1 <i<mand0 < j <k, to get a string of length ¢ with j occurrences of “11” ending in 0, we
can append “0” to a string of length ¢ — 1 with j occurrences of “11” ending in 0 or 1, which gives

DPIi][5][0] = DP[i — 1][5][0] + DP[i — 1][5][1].
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To get a string of length ¢ with j occurrences of “11” ending in 1, we can append “1” to a string of
length ¢ — 1 with j occurrences of “11” ending in 0 or to a string of length ¢ — 1 with j — 1 occurrences

of “11” ending inl (lf] > 0) 'Ihus, ou{_ g/ Lo WO\I CA{ (/[\

_ [DPli- 0] S =0

DPi[5][1] = {DP[i—l][j][O] +DPJ[i —1][j — 1][1], ifj > O.
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4. Calculation order: The entries can be calculated in order of increasing ¢. There is no interaction
between entries with the same 4, hence the order within the same value of ¢ can be arbitrary (e.g.

increasing in j and [).
5. Extracting the solution: The solution is D P[n][k][0] + DP[n][k][1].

6. Running time: The running time of the solution is O(nk) as there are O(nk) entries in the table,
each of which is processed in O(1) time, and the solution is extracted in O(1).
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Exercise 7.5  Approximately solving knapsack (1 point).

Consider a knapsack problem with n items with values v; € Nand weights w; € Nfori € {1,2,...,n},
and weight limit W € N. Assume’ that wyay 1= maxi<i<n w; < W and also that W < 37, w;.

For a set of items I C {1,2,...,n}, we write v(I) = ) ;c;v; and w(I) = ), w; for the total value
(resp. weight) of I. So, the solution to a knapsack problem is given by
opt :=max{v(I): I C{1,2,...,n}, w()<W}.

Let € > 0. We say a set of items I C {1,2,...,n} is e-feasible if it violates the weight limit by at most
afactor 1 + ¢, that is, if
w(l) < (1+¢)-W.

In this exercise, we construct an algorithm that finds an e-feasible set I with v(I) > opt in polynomial
time in n and 1/¢.
(a) Let k € N. Consider a ‘rounded version’ of the knapsack problem above obtained by replacing the
weights w; by:
w; =k- {%J .
w; A

Recall the dynamical programming algorithm you have seen in the lecture which solves the knapsack
problem in time O(n - W). Explain how to modify this algorithm to solve the ‘rounded version’ in
time O ((W/ k)- n) For simplicity, you may assume that W is an integer multiple of & for this part.

Hint: After rounding, all the w; are integer multiples of k. Use this to reduce the number of table
entries you have to compute in the dynamical programming algorithm.
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The dynamical programming algorithm from the lecture fills out a table MW/0, . .., n|[0, ..., W]
with entries given by

MW (i, w) := ‘largest value v(I) one can obtain with I C {1,2,...,i} and w(I) < w’.

This table is filled using the recursion: _
1-1
MW (i, w) = max {MW (i — 1,w), v; + MW (f, w — w;)}

Note that after rounding, all the w; are integer multiples of k. Therefore, in the rounded problem, it
suffices to only compute the table entries where the index w is an integer multiple of £. This leads
to (W/k+1)-(n+1) table entries in total, each of which takes constant time to compute, meaning
runtime O ((W/k) - n) in total.

We write opt,, for the optimum solution value of the rounded problem in part (a). From now on, you
may assume that your modified algorithm also returns a set I, with v(I) = optj and ) ,c; w; < W.

(b) Explain why opt;, > opt.
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We have w; < w; for each ¢ € {1,2...,n}. Therefore, any set I of items with w(I) < W also
satisfies ) ;.; w; < W. Since the values of each item are the same in the rounded problem, this
implies that opt;, > opt.



(c) Sete := (nk)/wmax. Show that w(Ix) < (1 + ¢) - W, that is, show that I}, is e-feasible.

Hint: Show that w; < w; + k for eachi € {1,2,...,n}. We know that },.; w; < W. Combine
these facts to show that w(Ij) := Ziefk w; < W + n - k. Finally, use the fact that W/wmax > 1 to

conclude your proof.
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(d) Now let € > 0 be arbitrary. Describe an algorithm that finds an e-feasible set I of items with
v(I) > opt in time O(n3/¢). Prove the runtime guarantee and correctness of your algorithm.

Hint: Apply the algorithm of part (a) to the rounded problem with k = (Wmax - €)/n. For simplicity,
you may assume that this k is an integer in your proof. Then, use the assumption that W < Y " | w;
(< N - Wmax) to bound the runtime of the algorithm in terms of n and 1/e. Finally, use part (b) and
part (c) to show correctness.

(»
LOL A’ [LJ%LX : ZCB } n € []\J ‘ be) ¢5Ju|/b\}0+l00\ hint+

L Xl vl va He moé&}/léé’ Kn A)osau,ﬂ\ al 50/11/)1\1/1—\ /nyL\
§a2 [~

(& oW = kT Vil

For rontio ¢

() W -n N ,/\7' -
_—> L\,\) /}/\ ) = WPoan £ ¢ W pm 2
U) n* N s i ‘ - y\z
< § oo T T 0zD
Mo’
L eve L u;e& ) < ne Weaw Q_} Cq) :

For Lorevtnesy | we shav Mgk ke L, rebuened
Fron e For ow L6 deed g - feanble,
fe. UL s @)W end (L) 2 oot

by peit ) we heve  W(I) > oﬁ.

Suce b= v )/ S so bR e by
pr b () vl hee wlDD s Ut W



(e)* Let ¢ = 1/100. Give an example of a knapsack problem which has an e-feasible solution I with
value
v(I) =2 - opt,
Your example should satisfy wy,x < Wand W < Z;;l w.

Solution:

Consider the knapsack problem with two items, v1 = v = w; = we = 101 and W = 200.
Then, opt = 101 as we can only take one item. However, taking both items yields a solution which
violates the weight limit by only a factor 1/100 (as (202 — 200)/200 = 1/100). Thus there is an
e-feasible solution with value 202 = 2 - opt.



