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Algorithms & Data Structures Exercise sheet 6 HS 23

The solutions for this sheet are submitted at the beginning of the exercise class on 06 November 2023.
Exercises that are marked by * are challenge exercises. They do not count towards bonus points.

You can use results from previous parts without solving those parts.

Data structures.

Exercise 6.1  Finding the i-th smallest key in an AVL tree (1 point).

Let A be an AVL tree (as described in the lecture) with n nodes. Let k; < k2 < ... < k, be the keys
of A, in ascending order. For a given 1 < ¢ < n, our goal is to find k;, the i-th smallest key of A.

(a) Suppose i = 1. Describe an algorithm that finds k; in O(log n) time.
Hint: An AVL tree is a BST (binary search tree).
(b) Describe an algorithm that finds k; in O(i - logn) time.
Hint: You are allowed to make changes to A while executing your algorithm.
It turns out that we can find k; in time O(log n), if we modify the definition of an AVL tree a bit.

(c) Modify the definition of an AVL tree by storing two additional integers s;(v), s,(v) € N in each
node v. Assuming now that A satisfies your modified definition, describe an algorithm that finds
k; in O(logn) time.

Remark. Your modified definition should still allow for the search, insert and remove operations to
be performed in O(log n) time, but you are not required to prove that this is the case.

Exercise 6.2  Round and square brackets.
A string of characters on the alphabet {4,...,Z, (,), [,1} is called well-formed if either
1. It does not contain any round or square brackets, or

2. It can be obtained from an empty string by performing a sequence of the following operations,
in any order and with an arbitrary number of repetitions:

(a) Take two non-empty well-formed strings a and b and concatenate them to obtain ab,
(b) Take a well-formed string a and add a pair of round brackets around it to obtain (a),

(c) Take a well-formed string a and add a pair of square brackets around it to obtain [a].



The above reflects the intuitive definition that all brackets in the string are ‘matched’ by a bracket of the
same type. For example, s = FOO(BAR[A]), is well-formed, since it is the concatenation of s; = F0O,
which is well-formed by 1., and so = (BAR[A]), which is also well-formed. String s, is well-formed
because it is obtained by operation 2(b) from s3 = BAR[A], which is well-formed as the concatenation
of well-formed strings s4 = BAR (by 1.) and s5 = [A] (by 2(c) and 1.). String ¢ = FOO[(BAR]) is not
well-formed, since there is no way to obtain it from the above rules. Indeed, to be able to insert the
only pair of square brackets according to the rules, its content £; = (BAR must be well-formed, but this
is impossible since ¢; contains only one bracket.

Provide an algorithm that determines whether a string of characters is well-formed. Justify briefly why
your algorithm is correct, and provide a precise analysis of its complexity.

Hint: Use a data structure from the last exercise sheet.

Dynamic programming.

Exercise 6.3  Introduction to dynamic programming (1 point).

Consider the recurrence

A =1
Ay =2
Ay =3
Ay =4

A, =A, 1+ A, 3+2A, 4forn>>5.

(a) Provide a recursive function (using pseudo code) that computes A,, for n € N. You do not have to
argue correctness.

(b) Lower bound the run time of your recursion from (a) by Q(C") for some constant C' > 1.

(c) Improve the run time of your algorithm using memoization. Provide pseudo code of the improved
algorithm and analyze its run time.

(d) Compute A, using bottom-up dynamic programming and state the run time of your algorithm.
Address the following aspects in your solution:

(1) Definition of the DP table: What are the dimensions of the table DP[...]? What is the meaning
of each entry?

(2) Computation of an entry: How can an entry be computed from the values of other entries?
Specify the base cases, i.e., the entries that do not depend on others.

(3) Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

(4) Extracting the solution: How can the final solution be extracted once the table has been filled?

(5) Run time: What is the run time of your solution?

Exercise 6.4  Jumping game (1 point).



We consider the jumping game from the lecture for the following array of length n = 10:
All.n] =12,4,2,2,1,1,1,1,5,2].

We start at position 1. From our current position i, we may jump a distance of at most A[i] forwards.
Our goal is to reach the end of the array in as few jumps as possible. Recall the dynamic programming
solution given for the problem in the lecture, revolving around the numbers:

M k] := ‘largest position reachable in at most & jumps’.

In this exercise, we compare two different methods for computing the M [k].

(a) Consider the recursive relation:

Mo =1, ®
M k] = the maximum element of the array Ry,
where Ry is the array with indices 7 in the range 1 < ¢ < Mk — 1] and Ry[i] := Ali] + 1.

Compute M[k] for k = 1,2,..., K using relation (R), where K is the smallest integer for which
M[K] > n = 10. For each 1 < k < K, write down the array R}, used in the recursion. Finally,
compute Zle | Rp|.

(b) Now consider the recursive relation:

M'[0]
M'[1] =1+ A[1], R’)

M'[k] = the maximum element of the array R,

L,
1

were R)_is the array with indices 4 in the range M'[k — 2] < ¢ < M'[k — 1] and R} [1] := A[i] + 1.
Compute M'[k] for k = 1,2, ..., K using relation (R’), where K is the smallest integer for which
M'IK] > n = 10. For each 2 < k < K, write down the array R% used in the recursion. Finally,
compute S5 | R, |.

(c*) Now let A be an arbitrary array of size n > 2 containing positive, non-repeating' integers.
Let M k], M'[k] be the numbers computed using relations (R) and (R’), respectively. Prove that
MIk] = M'[k] for all k£ > 0.

Hint: Use induction. First show that M [0] = M'[0] and that M[1] = M’[1]. Then, use the induction
hypothesis ‘M [k — 2] = M'[k — 2] and M [k — 1] = M'[k — 1] to show that max Rj, = max R)_for
allk > 2.

Exercise 6.5  Longest common subsequence and edit distance.

In this exercise, we are going to consider two examples of problems that have been discussed in the
lecture.

For part (a), we are going to look at the problem of finding the longest common subsequence in two
arrays. So, we are given two arrays, A of length n, and B of length m, and we want to find their longest
common subsequence and its length. The subsequence does not have to be contiguous. For example, if
A=11,8,5,2,3,4] and B = [8,2,5, 1,9, 3], a longest common subsequence is 8, 5, 3 and its length is
3. Notice that 8, 2, 3 is another longest common subsequence.

For part (b), we are looking at the problem of determining the edit distance between two sequences. We

!"This assumption is only for convenience in writing the proof.



are again given two arrays, A of length n, and B of length m. We want to find the smallest number of
operations in “change”, “insert” and “remove” that are needed to transform one array into the other. If
for example A = [A”, “N”, “D”] and B = [*A”, “R”, “E”], then the edit distance is 2 since we can perform
2 “change” operations to transform A to B but no less than 2 operations work for transforming A into

B.
(a)

(b)

Given are the two arrays
A=17,6,3,2,8,4,5,1]

and
B =13,9,10,8,7,1,2,6,4,5].

Use the dynamic programming algorithm from the lecture to find the length of a longest common
subsequence and the subsequence itself. Show all necessary tables and information you used to
obtain the solution.

Define the arrays
A — I:“S”, “O”’ “R”, “T”]
and
B — [“S”, “E”7 “A”, “R”, “C”, “H”] .

Use the dynamic programming algorithm from the lecture to find the edit distance between these
arrays. Also determine which operations one needs to achieve this number of operations. Show all
necessary tables and information you used to obtain the solution.



Exercise 6.1  Finding the i-th smallest key in an AVL tree (1 point).

Let A be an AVL tree (as described in the lecture) with n nodes. Let k1 < ko < ... < k;, be the keys
of A, in ascending order. For a given 1 < i < n, our goal is to find &;, the i-th smallest key of A.

(a) Suppose i = 1. Describe an algorithm that finds k1 in O(log n) time.
Hint: An AVL tree is a BST (binary search tree).

\V\KFU \Q\OI/\ N SW@\LLV \ l’hj(bw
N

Wi oV L fl/(’ ) ,Qovxj as vﬁOéJl \()Lt

Since A is a BST, we know that for each node v with key key(v), the keys of its left subtree are all
smaller than key(v), while the keys of its right subtree are all greater than key(v). It follows that
k1 can be found by starting at the root node, and then repeatedly moving to the left child, until
we arrive at a node without a left child. As A is an AVL tree, it has depth O(logn), and so this
procedure takes time O(logn).



(b) Describe an algorithm that finds &; in O(i - log n) time.

Hint: You are allowed to make changes to A while executing your algorithm.

Using the algorithm of part (a), we can find the smallest key k; of A in time O(logn). Then we can
remove the node with key k; from A in time O(log n), yielding a new AVL tree A’ whose smallest
key is ko. Repeating this procedure i times yields k;, using total time O(i - log n).

It turns out that we can find k; in time O(log n), if we modify the definition of an AVL tree a bit.

(c) Modify the definition of an AVL tree by storing two additional integers s;(v), sy(v) € N in each
node v. Assuming now that A satisfies your modified definition, describe an algorithm that finds
k; in O(logn) time.

Remark. Your modified definition should still allow for the search, insert and remove operations to
be performed in O(log n) time, but you are not required to prove that this is the case.
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rogted  al Ze/(/r:gM child 9/ U.

The additional integers we store are the sizes 0 < s;(v), s,(v) < n of the left and right subtree
_ropBted/a/u, respectively. (This information can be updated in time O(1) during the rebalancing
rotations performed during the insert and remove operations). Assuming A is modified so that
each node contains these integers, our algorithm to find k; proceeds as follows.

Let v be the root node of A. Set iy = i. We want to find the iy-th smallest key in the subtree rooted
at vg (which is just A). We consider the following three cases:

(i) If s;(vo) = ip — 1, we know that there are precisely 79 — 1 keys in the subtree rooted in vg
that are smaller than key(uvp); namely the keys in the subtree rooted in the left child of .
But that means that key(wvp) is the ip-th smallest key in the subtree rooted in v, and so we
output key(wvp).

(ii) If s;(vo) > 49 — 1, the ip-th smallest key lies in the subtree rooted in the left child 1c(vp) of vg.

VU smallest 7 sy () = 25 2eam,

@\@ N (P N G
/6\3 @/ . e o fofl shiree  vooled  oF
@/ ? Lo/t dlb of
ot Canhaug Loy ok f\® Notice

bt e jSM Sralleyt (I~ the enbire

bree () sk (( EM sma_[ﬁesl [~ @/@\@

In case (ii), note that the ip-th smallest key of the subtree rooted in lc(vp) is equal to the ip-th
smallest key of A (since all keys in the right subtree are too large). In this case, we can thus set
v1 = le(vg) and 41 = g, and apply the procedure above.



(iii) If s;(vo) < io — 1, the io-th smallest key lies in the subtree rooted in the right child rc(wvo)
of vg.
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In case (iii), things are slightly more complicated. Note that all s;(vg) keys in the subtree rooted at
lc(vp) are smaller than key(vg), and that key(rc(vg)) > key(vp). That is to say, if we set
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i1 =10 — (s1(vo) + 1),

then the 7;-th smallest key in the subtree rooted in v; = rc(vp) is precisely the ip-th smallest key
in the subtree rooted in vy (which is what we are after).

We now repeat this procedure until we reach case (i). Each repetition takes O(1) time. We move
one layer down in each repetition. If we ever reach a leaf, we are certainly in case (i). Therefore,
the whole algorithm takes at most O(log n) time (recall that A has depth O(logn)).



Exercise 6.3  Introduction to dynamic programming (1 point).

Consider the recurrence

A =1
Ay =2
A3 =3
Ay =4

A, =A, 1+A,_3+2A,_4forn >5.

(a) Provide a recursive function (using pseudo code) that computes A,, for n € N. You do not have to
argue correctness.

Algorithm 2 A(n)
if n < 4 then
return n

else
return A(n — 1) + A(n — 3) + 2A(n — 4)

(b) Lower bound the run time of your recursion from (a) by (C"™) for some constant C' > 1.
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« Base Case.
For n € Nwithn < 4,wehave T'(n) =1 > % - 3"/4 since n/4 < 1 implies 3/4 < 3.

« Induction Hypothesis.
Assume that for some integer & > 5 the statement holds for all ¥’ < k.
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Thus, the statement also holds for k.
By the principle of mathematical induction, T'(n) > % - 3"/4 holds for every n € N.

Hence, the run time of the algorithm in (a) is T'(n) > % - 34 > Q(C™) for C = 3/4 > 1.
Remark: With a bit more care, it can be shown by induction that T'(n) = ©(¢™), where ¢ ~ 1.618 is
the unique positive solution of t* = x3 + z + 1.



(c) Improve the run time of your algorithm using memoization. Provide pseudo code of the improved
algorithm and analyze its run time.

Algorithm 3 Compute A, using memoization

memory<— n-dimensional array filled with (—1)s
function A_MEM(n)

if memory [n] # —1 then > If A, is already computed.
return memory [n]

if n < 4 then
memory[n] < n
returnn

else

Ay < AMem(n — 1) + A Mem(n — 3) + 2A Mem(n — 4)
memory[n] + A,
return A,

When calling A Mem(n), each Ay for 1 < k < n is computed exactly once and then stored in
memory. Thus the run time of A Mem(n) is ©(n).
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(d) Compute A,, using bottom-up dynamic programming and state the run time of your algorithm.
Address the following aspects in your solution:

(1) Definition of the DP table: What are the dimensions of the table D P|...]? What is the meaning
of each entry?

(2) Computation of an entry: How can an entry be computed from the values of other entries?
Specify the base cases, i.e., the entries that do not depend on others.

(3) Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

(4) Extracting the solution: How can the final solution be extracted once the table has been filled?

(5) Run time: What is the run time of your solution?
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Exercise 6.4  Jumping game (1 point).

We consider the jumping game from the lecture for the following array of length n = 10:

All.n] =[2,4,2,2,1,1,1,1,5,2].

We start at position 1. From our current position 4, we may jump a distance of at most A[i] forwards.
Our goal is to reach the end of the array in as few jumps as possible. Recall the dynamic programming
solution given for the problem in the lecture, revolving around the numbers:

M k] := ‘largest position reachable in at most k jumps’.

In this exercise, we compare two different methods for computing the M|[k].

(a) Consider the recursive relation:

Mo =1 ®
M k] = the maximum element of the array Ry,
where Ry, is the array with indices ¢ in the range 1 < ¢ < M[k — 1] and R[] := A[i] + 4.

Compute M[k] for k = 1,2, ..., K using relation (R), where K is the smallest integer for which
M[K] > n = 10. For each 1 < k < K, write down the array Ry, used in the recursion. Finally,
compute Y"1, | Ryl.
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Solution:

1
3 [2+1]

6 [24+1,4+2 2+3]

7 [2+41,4+2,243,2+4,1+5, 1+6]

8 [2+41,442 2+3,2+4,1+5 146, 1+7]

9  [2+41,4+42 243,2+4,1+5, 146,147, 1+8]

14 [241,442, 243,244, 145 1+6,1+7, 1+8, 5+9]

(b) Now consider the recursive relation:

M0 =1,
M'[1] =1+ A[1], ®)

M'[k] = the maximum element of the array R},

were Rj_ is the array with indices i in the range M'[k — 2] < i < M'[k — 1] and Ry [i] := A[i] + 1.
Compute M'[k] for k = 1,2, ..., K using relation (R’), where K is the smallest integer for which
M'[K] > n = 10. For each 2 < k < K, write down the array R}, used in the recursion. Finally,

compute S, | Ry |.
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Solution:

k M'k] R
0 1 -
1 3 -
2 6 442, 2+ 3
3 7 244,145, 1+ 6]
1 8 147
5 9 [1+48§]

K=6 14 [6+9]

So, Yok | Ryl = 8.



(c*) Now let A be an arbitrary array of size n > 2 containing positive, non-repeating' integers.
Let M|k], M'[k] be the numbers computed using relations (R) and (R’), respectively. Prove that
M[k] = M'[k] forall k > 0.

Hint: Use induction. First show that M [0] = M’[0] and that M [1] = M'[1]. Then, use the induction
hypothesis ‘M [k — 2] = M'[k — 2] and M [k — 1] = M'[k — 1]’ to show that max Rj, = max R;_for
allk > 2.
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(c*) Now let A be an arbitrary array of size n > 2 containing positive, non-repeating' integers.
Let M|k], M'[k] be the numbers computed using relations (R) and (R’), respectively. Prove that
M[k] = M'[k] forall k > 0.

Hint: Use induction. First show that M [0] = M’[0] and that M [1] = M'[1]. Then, use the induction
hypothesis ‘M [k — 2] = M'[k — 2] and M [k — 1] = M'[k — 1]’ to show that max Rj, = max R;_for
allk > 2.
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