
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 30 October 2023
Johannes Lengler, David Steurer
Lucas Slot, Manuel Wiedmer, Hongjie Chen, Ding Jingqiu

Algorithms & Data Structures Exercise sheet 6 HS 23

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 06 November 2023.

Exercises that are marked by ⇤ are challenge exercises. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Data structures.

Exercise 6.1 Finding the i-th smallest key in an AVL tree (1 point).

Let A be an AVL tree (as described in the lecture) with n nodes. Let k1 < k2 < . . . < kn be the keys
of A, in ascending order. For a given 1  i  n, our goal is to �nd ki, the i-th smallest key of A.

(a) Suppose i = 1. Describe an algorithm that �nds k1 in O(log n) time.

Hint: An AVL tree is a BST (binary search tree).

(b) Describe an algorithm that �nds ki in O(i · log n) time.

Hint: You are allowed to make changes to A while executing your algorithm.

It turns out that we can �nd ki in time O(log n), if we modify the de�nition of an AVL tree a bit.

(c) Modify the de�nition of an AVL tree by storing two additional integers sl(v), sr(v) 2 N in each
node v. Assuming now that A satis�es your modi�ed de�nition, describe an algorithm that �nds
ki in O(log n) time.

Remark. Your modi�ed de�nition should still allow for the search, insert and remove operations to
be performed in O(log n) time, but you are not required to prove that this is the case.

Exercise 6.2 Round and square brackets.

A string of characters on the alphabet {A, . . . , Z, (,), [,]} is called well-formed if either

1. It does not contain any round or square brackets, or

2. It can be obtained from an empty string by performing a sequence of the following operations,
in any order and with an arbitrary number of repetitions:

(a) Take two non-empty well-formed strings a and b and concatenate them to obtain ab,

(b) Take a well-formed string a and add a pair of round brackets around it to obtain (a),

(c) Take a well-formed string a and add a pair of square brackets around it to obtain [a].

�e above re�ects the intuitive de�nition that all brackets in the string are ‘matched’ by a bracket of the
same type. For example, s = FOO(BAR[A]), is well-formed, since it is the concatenation of s1 = FOO,
which is well-formed by 1., and s2 = (BAR[A]), which is also well-formed. String s2 is well-formed
because it is obtained by operation 2(b) from s3 = BAR[A], which is well-formed as the concatenation
of well-formed strings s4 = BAR (by 1.) and s5 = [A] (by 2(c) and 1.). String t = FOO[(BAR]) is not
well-formed, since there is no way to obtain it from the above rules. Indeed, to be able to insert the
only pair of square brackets according to the rules, its content t1 = (BARmust be well-formed, but this
is impossible since t1 contains only one bracket.

Provide an algorithm that determines whether a string of characters is well-formed. Justify brie�y why
your algorithm is correct, and provide a precise analysis of its complexity.

Hint: Use a data structure from the last exercise sheet.

Dynamic programming.

Exercise 6.3 Introduction to dynamic programming (1 point).

Consider the recurrence
A1 = 1

A2 = 2

A3 = 3

A4 = 4

An = An�1 +An�3 + 2An�4 for n � 5.

(a) Provide a recursive function (using pseudo code) that computes An for n 2 N. You do not have to
argue correctness.

(b) Lower bound the run time of your recursion from (a) by ⌦(Cn) for some constant C > 1.

(c) Improve the run time of your algorithm using memoization. Provide pseudo code of the improved
algorithm and analyze its run time.

(d) Compute An using bo�om-up dynamic programming and state the run time of your algorithm.
Address the following aspects in your solution:

(1) De�nition of the DP table: What are the dimensions of the tableDP [. . .]? What is the meaning
of each entry?

(2) Computation of an entry: How can an entry be computed from the values of other entries?
Specify the base cases, i.e., the entries that do not depend on others.

(3) Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

(4) Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

(5) Run time: What is the run time of your solution?

Exercise 6.4 Jumping game (1 point).

2

We consider the jumping game from the lecture for the following array of length n = 10:

A[1..n] = [2, 4, 2, 2, 1, 1, 1, 1, 5, 2].

We start at position 1. From our current position i, we may jump a distance of at most A[i] forwards.
Our goal is to reach the end of the array in as few jumps as possible. Recall the dynamic programming
solution given for the problem in the lecture, revolving around the numbers:

M [k] := ‘largest position reachable in at most k jumps’.

In this exercise, we compare two di�erent methods for computing theM [k].

(a) Consider the recursive relation:

M [0] = 1,

M [k] = the maximum element of the array Rk,
(R)

where Rk is the array with indices i in the range 1  i  M [k � 1] and Rk[i] := A[i] + i.
Compute M [k] for k = 1, 2, . . . ,K using relation (R), where K is the smallest integer for which
M [K] � n = 10. For each 1  k  K , write down the array Rk used in the recursion. Finally,
compute

PK
k=1 |Rk|.

(b) Now consider the recursive relation:

M
0[0] = 1,

M
0[1] = 1 +A[1],

M
0[k] = the maximum element of the array R

0
k,

(R’)

were R0
k is the array with indices i in the rangeM 0[k � 2] < i  M

0[k � 1] and R
0
k[i] := A[i] + i.

Compute M 0[k] for k = 1, 2, . . . ,K using relation (R’), where K is the smallest integer for which
M

0[K] � n = 10. For each 2  k  K , write down the array R
0
k used in the recursion. Finally,

compute
PK

k=1 |R0
k|.

(c*) Now let A be an arbitrary array of size n � 2 containing positive, non-repeating1 integers.
Let M [k],M 0[k] be the numbers computed using relations (R) and (R’), respectively. Prove that
M [k] = M

0[k] for all k � 0.

Hint: Use induction. First show thatM [0] = M
0[0] and thatM [1] = M

0[1]. �en, use the induction
hypothesis ‘M [k� 2] = M

0[k� 2] andM [k� 1] = M
0[k� 1]’ to show thatmaxRk = maxR0

k for
all k � 2.

Exercise 6.5 Longest common subsequence and edit distance.

In this exercise, we are going to consider two examples of problems that have been discussed in the
lecture.
For part (a), we are going to look at the problem of �nding the longest common subsequence in two
arrays. So, we are given two arrays,A of length n, andB of lengthm, and we want to �nd their longest
common subsequence and its length. �e subsequence does not have to be contiguous. For example, if
A = [1, 8, 5, 2, 3, 4] and B = [8, 2, 5, 1, 9, 3], a longest common subsequence is 8, 5, 3 and its length is
3. Notice that 8, 2, 3 is another longest common subsequence.
For part (b), we are looking at the problem of determining the edit distance between two sequences. We

1�is assumption is only for convenience in writing the proof.

3

are again given two arrays, A of length n, and B of lengthm. We want to �nd the smallest number of
operations in “change”, “insert” and “remove” that are needed to transform one array into the other. If
for exampleA = [“A”, “N”, “D”] andB = [“A”, “R”, “E”], then the edit distance is 2 since we can perform
2 “change” operations to transform A to B but no less than 2 operations work for transforming A into
B.

(a) Given are the two arrays
A = [7, 6, 3, 2, 8, 4, 5, 1]

and
B = [3, 9, 10, 8, 7, 1, 2, 6, 4, 5].

Use the dynamic programming algorithm from the lecture to �nd the length of a longest common
subsequence and the subsequence itself. Show all necessary tables and information you used to
obtain the solution.

(b) De�ne the arrays
A = [“S”, “O”, “R”, “T”]

and
B = [“S”, “E”, “A”, “R”, “C”, “H”].

Use the dynamic programming algorithm from the lecture to �nd the edit distance between these
arrays. Also determine which operations one needs to achieve this number of operations. Show all
necessary tables and information you used to obtain the solution.

4

Intuition
smagfyzzer

we move left as long as possible

Intuition we stove se and Sr in o where

Se nodes in left subtree rooted at left child of r
se nodes in right subtree rooted at right child of r

How does that help 4th smallest node

Simple example Seth 3 4 n

I there are
3 smaller model

se
lo than x x

11 4th smallest

rooted at left right child of o
mom

3rd smallest 1 3 3 7 2

3rd smallest must be in

I the left subtree rooted at

left child of 4

we continue looking at Notice

that the 3rd smallest in the entire

tree is still 3rd smallest in AD

yay

s smallest s

a Sth smallest must be

in right subtree rooted

at right child of 9

we continue looking at

In this subtree we look for the

S 3 1
0

1 smallest since all nodes

of the left subtree and h itself

are smaller than g

Intuition

Runtime of reursive algorithm like in

previous exercises

Tin a t Tin 3 t T n n n 5

Ten
i else

To get to the lower bound we

estimate downward nach unten abschitzen

such that Tcu 21 C

Tch Tca At Tla 3 Ten 4

Assume Tca is mon increasing then

Tn 2 3TCn u 2 5Th 2 4 7

7 3 Tea G k

we choose he f th s

Tcn 2 3 n h

for neha a we have 3 A

but Tca A thus we have to add

a constant to make it work for nss

Tcn 213 3 as 1

Notice that so far this is just an

assumption we have to prove it

Notile how we formulated our 1H

We showed that for k S all strictly
positive strictly smaller integers K 21173,4

we have Tn 133

If we now show Tca for some

k we extend the range of k by

1 which is essentially the same

as proving Kun htt

Very similar to fibonacci which I showed

you last week week 6 slides

This is mostly reading off of the

pseudocode for this exercise

1 DOCK stores Ak for Aiken size is n

H

Dri
i n fi en

PPC a DPC 3 2PPCi n
Sei en

we go from smallest to largest

DP entry

4 solution is in Dpln

all entries are computed in AM

this Aln

A C2 4 2 7,1 1,11 S 1 D player

7 3

MID largest position reachable in E O jumps

Mco n

How far can we jump from i 1

At most to itali

Rli Ali ti

At this point you should've asked yourself

Why Mick 2 is MICK 13 and if
it is still corrent

Visual representation of idea

remember MCA largest position reachable in

k jumps

1
mca is

met Mla

for position i we jump from to land on MCK

we must have MIK 1 C is Mch n

proof sketch of Mlk 2 is Mlk n

If we assume A consists only of integers 2s

then surely we must have Mci D e Mail

for all he is K

Assume it Afi MCG for some is MCA 2

Since i e MIG 2 and we reach Mca in

only a single jump using Ali we must

have MCU MA D Contradiction to

MCU 1 C MCA

MI
MIO 1 M o and

MG Max it Ali Aei EMG

max it Ali i 1 stats N s

I Assume Mii Mili for Osiek for
some KE IN

I kno kts

We show Max Ruth mat Kats

Sine Ran fit Ali Afif MI6

and Rita it Ali I Mia nai EMI

we clearly have Rhine Rats and

therefore may R'an E Max Ran

It remain to show that

Max Riken max Rhin

BI n n o and

MG Max it Ali Aei EMG

max it Ali i 1 stats N s

I Assume Mii Mili for Osiek for
some KE IN

I kno kts

We show Max Ruth mat Kats

Sine Ran fit Ali Afif MI6

and Rita it Ali I Mia nai EMI

Clearly we have kit I Ran

If we have that max Rats 4 Rant Rain

then Max Rats max R'ay must hold

Eic
If max not her

then it must be here

New notile that

Rat I Rin Aliltilleishck n Ra

but then

wax RaulRita max Ra Mlk Mlk 11

where we used the fait that A

only contains numbers 0

Therefore

Matn max Run Max RayanR'an

Max R'an

N'Chen

