
30.10.2023 — Georg Hasebe

Week 6 — Sheet 5
Algorithms and Data Structures

Debriefing of Submissions

log2(n)

∑
i=1

log2(n) − i + 1

Notice that if then , and if then

.

i = 1 log2(n) − i + 1 = log2(n) i = log2(n)

log2(n) − i + 1 = 1

log2(n)

∑
i=1

log2(n) − i + 1

Notice that if then , and if then

.

We sum from to , using Gauss’ sum formula we get:

i = 1 log2(n) − i + 1 = log2(n) i = log2(n)

log2(n) − i + 1 = 1

1 log2(n)

log2(n)

∑
i=1

log2(n) − i + 1 =
log2(n)(log2(n) + 1)

2

Solutions didn’t really use the array they described in the hint. Careful
because of array initialisation.

Exercise Sheet 5

Debriefing of Exercise Sheet 5

Theory Recap

Dynamic Programming (DP)

What is DP and why is it useful?

In Dynamic Programming, we try to simplify a
complex problem by breaking it down to

simpler sub-problems in a recursive manner.

Why is it useful?
Example
Consider the Fibonacci Example from the lecture.

https://willrosenbaum.com/teaching/2021s-cosc-112/notes/recursive-fibonacci/

https://willrosenbaum.com/teaching/2021s-cosc-112/notes/recursive-fibonacci/

Using DP we can make improvements

https://programming.guide/dynamic-programming-vs-memoization-vs-tabulation.html

Doesn’t seem very useful?

O(2n) O(n)

https://programming.guide/dynamic-programming-vs-memoization-vs-tabulation.html

Top-Down vs Bottom-Up

Top-Down

(Memoization)

https://programming.guide/dynamic-programming-vs-memoization-vs-tabulation.html

Bottom-Up

(Tabulation)

DP is not easy.

But it can be mastered through
practice!

How to solve DP problems?
1. Understand the problem

2. Find/Design recurrence relation (i.e. how the smaller sub-problems relate to
each other)

3. Translate it to code (CodeExpert)

Hardest part?

Finding the recurrence relation
• Go through examples

• Construct your own examples

• Once you have an idea, try to simulate it

Minimal Editing Distance

Step 1: Understand the Problem

Minimal Editing Distance
(Edit Distance, Levenshtein Distance)

Given two strings and , what is the minimum
number of single-character edits (insertion, deletion,
substitution) required to turn one word into the other word?

A[1…n] B[1…m]

Step 2: Design Recurrence
Relation

A[1…n] =

B[1…m] =

A[1…n − 1] + A[n] =

B[1…m − 1] + B[m] =

+

+

What if = ?

If = , then for the minimal edit distance (MED) we know:

MED(A[1…n], B[1…m]) = MED(A[1…n − 1], B[1…m − 1]) .

If ≠ , then what do we know?

If we replace (substitution) with we again have =
With the difference being that we made one edit operation, thus we have

MED(A[1…n], B[1…m]) = 1 + MED(A[1…n − 1], B[1…m − 1]) .

In some cases though, it can be beneficial to either delete or
insert characters depending the length of and .

For example, if we have and then we
simply delete X from or insert X into .

A B

A = ABCDX B = ABCD
A B

If we delete from , we reduce the length of by one and only considerA A

MED(A[1…n], B[1…m]) = 1 + MED(A[1…n − 1], B[1…m]) .

 for further inspection. However doesn’t change at all, and therefore

we still have to consider . Thus we get:

A[1…n − 1] B

B[1…m]

If we insert at the end of , we get:A

MED(A[1…n], B[1…m]) = 1 + MED(A[1…n], B[1…m − 1]) .

Since the last characters now match, we only consider for further
inspection. Because we inserted a single character into , we again consider

 (because the initial string, i.e. the long white bar and the small red bar,
remains the same). Thus we get:

B[1…m − 1]
A

A[1…n]

+

+

+

So far we have only considered some modifications at the end of the strings.
Since we can delete/insert characters at any position of the string, we need to
generalise our observations.

Let and , then for the minimal editing distance of
 and we write . It is true that:

i ∈ [1…n] j ∈ [1…m]
A[1…i] B[1…j] MED(i, j)

MED(i, j) = min
1 + MED(i − 1,j) deletion
1 + MED(i, j − 1) insertion

δ + MED(i − 1,j − 1) substitution

where if and zero otherwise.δ = 1 A[i] ≠ B[j]

Base Cases
Now that we have established the recurrence relation, it remains to consider the
base cases. Often times, these are just very simple cases, that don’t require a
lot of thinking, but they allow us to generate a solution.

Interactive Example:
 and A = "TIGER" B = "ZIEGE"

MED(i,j) - T I G E R

-

Z

I

E

G

E

MED(i, j) = min
1 + MED(i − 1,j) deletion
1 + MED(i, j − 1) insertion

δ + MED(i − 1,j − 1) substitution
where if and zero otherwise.δ = 1 A[i] ≠ B[j]

MED(i,j) - T I G E R

- 0 1 2 3 4 5

Z 1

I 2

E 3

G 4

E 5

MED(i, j) = min
1 + MED(i − 1,j) deletion
1 + MED(i, j − 1) insertion

δ + MED(i − 1,j − 1) substitution
where if and zero otherwise.δ = 1 A[i] ≠ B[j]

MED(i,j) - T I G E R

- 0 1 2 3 4 5

Z 1 1 2 3 4 5

I 2

E 3

G 4

E 5

MED(i, j) = min
1 + MED(i − 1,j) deletion
1 + MED(i, j − 1) insertion

δ + MED(i − 1,j − 1) substitution
where if and zero otherwise.δ = 1 A[i] ≠ B[j]

MED(i,j) - T I G E R

- 0 1 2 3 4 5

Z 1 1 2 3 4 5

I 2 2 1 2 3 4

E 3 3 2 2 2 3

G 4 4 3 2 3 3

E 5 5 4 3 2 3

MED(i, j) = min
1 + MED(i − 1,j) deletion
1 + MED(i, j − 1) insertion

δ + MED(i − 1,j − 1) substitution
where if and zero otherwise.δ = 1 A[i] ≠ B[j]

Runtime? Space Complexity?
• the table is by , thus the space complexity is in

• each cell can be computed in , we have cells, thus the runtime is in

m n O(nm)

O(1) m ⋅ n
O(mn)

