Week 6 — Sheet 5

Algorithms and Data Structures

30.10.2023 — Georg Hasebe

Debriefing of Submissions

log,(n)

) logy(n) —i+1
=1

Notice that if i = 1 then log,(n) — 1+ 1 = log,(n), and if i = log,(n) then

log)(n) —1+1=1.

log,(n)

) logy(n) —i+1
=1

Notice that if i = 1 then log,(n) — 1+ 1 = log,(n), and if i = log,(n) then
log,(n) —i1+1=1.
We sum from 1 to log,(n), using Gauss’ sum formula we get:

10g(n) log,(n)(log(n) + 1
Y logy(n) — i + 1 = 20T 1) zgz()+)

(b) Describe an algorithm that determines the smallest integer T' € N such that f(7") > N, making

O(logT') function calls to f. Prove that your algorithm is correct, and uses at most the desired
number of function calls.

Hint: Consider using a two-step approach. In the first step, apply the algorithm of part (a). For the
second step, modify the binary search algorithm and apply it to the array {1,2,...,Ty,}. Use helper

variables i1ow, thigh € N, that satisfy ilow < T < thigh at all times during the algorithm. In each
iteration, update i,y and/or ipign o that the number of remaining options for T is halved.

Solutions didn’t really use the array they described in the hint. Careful
because of array initialisation.

Exercise Sheet 5

Debriefing of Exercise Sheet 5

Theory Recap

Dynamic Programming (DP)

What is DP and why is it useful?

In Dynamic Programming, we try to simplify a
complex problem by breaking it down to
simpler sub-problems Iin a recursive manner.

Why is it useful?

Example

Consider the Fibonacci Example from the lecture.

fib (0)
/ \
fib fib (4)
/ \ VAN
fib (4) fib (3 fib (3) fib (2)

/7 \ / \ 7\

fib (3) fib(2) fib(2) fib(l) fib(2) fib (1)

7\

fib(2) fib (1)

https://willrosenbaum.com/teaching/2021s-cosc-112/notes/recursive-fibonacci/

fib(06)

/ \
b (flb(4)

/
fib (4 , fi1b (
/ \ / N\
b (

fib (3) fib(2) fib(fi1b(f1 fib (1)

7\

fib(2) fib (1)

f1

https://willrosenbaum.com/teaching/2021s-cosc-112/notes/recursive-fibonacci/

Using DP we can make improvements

fib(3 fib(3)
fib(2 fib(1) fib(2
/ \ / fib(1)
fib(O fib(1) fib(O

https://programming.guide/dynamic-programming-vs-memoization-vs-tabulation.html

Doesn’t seem very useful?

O2")

fib(7)
fib(6) / \ fib(5)
fib(5) fib(4) fib(4) fib(3)
PN /N R NEA
fib(4) fib(3) fib(3) fib(2) fib(3) fib(2) fib2) fib(1)
SN /N /N N /N
fib(3) fib(2) fib(2) fib(1) fib(2) fib(1) fib(1) fib(0) fib(2) fib(1) fib(1) fib(0) fib(1) fib(0)
ANEANNA /\ /\
fib@) fib(1) fib(1) fib(0) fib(1) fib(0) fib(1) fib(0) fib(1) fib(0)

/\

fib(1) fib(0)

https://programming.guide/dynamic-programming-vs-memoization-vs-tabulation.html

O(n)

fib(7)

fib(6)

/

fib(5)

N\

fib(4)

ib(3)

\../

fib(2)

/

fib(1)

N\

fib(0)

Top-Down vs Bottom-Up

fib_mem(n) { fib_tab(n) {
if (mem[n] is not set) mem[0] = 0O
F @ = 2) rEsulbs = 00 mem[1] = 1
else result = fib _mem(n-2) + fib _mem(n-1) FRFE = 20Ul

mem[n] = result
return mem[n]

mem[i] = mem[i-2] + mem[i-1]
return mem[n]

Top-Down Bottom-Up

(Memoization) (Tabulation)

https://programming.guide/dynamic-programming-vs-memoization-vs-tabulation.html

DP Is not easy.

But it can be mastered through
practice!

How to solve DP problems?

1. Understand the problem

2. Find/Design recurrence relation (i.e. how the smaller sub-problems relate to
each other)

3. Translate it to code (CodeExpert)

Hardest part?

Finding the recurrence relation

* (Go through examples
* Construct your own examples

 Once you have an idea, try to simulate it

Minimal Editing Distance

Step 1: Understand the Problem

Minimal Editing Distance

(Edit Distance, Levenshtein Distance)

Given two strings A[1...n] and B|1...m], what is the minimum

number of single-character edits (insertion, deletion,
substitution) required to turn one word into the other word?

Step 2: Design Recurrence
Relation

All.n]= [|
Bll.m= []

R E—
R YR E—

watt [T] = [

If D — D , then for the minimal edit distance (MED) we know:

MED(A[L...n],B[1...m]) = MED(A[1...n — 1],B[1...m — 1]).

|f D # D . then what do we know?
If we replace (substitution) D with D we again have D — D

With the difference being that we made one edit operation, thus we have

MED(AIL...n],B[l..m])) =1+ MEDA[1...n—-1],B[l...m —1]).

In some cases though, it can be beneficial to either delete or
insert characters depending the length of A and B.

For example, if we have A = ABCDX and B = ABCD then we
simply delete X from A or insert X into B.

If we delete D from A, we reduce the length of A by one and only consider

All...n — 1] for further inspection. However B doesn’t change at all, and therefore

we still have to consider B[1...m]. Thus we get:

MED(A[L...n],B[l...m]) =1+ MED(A[l...n—-1],B[1...m]).

If we insert D at the end of A, we get:

. I+0i+
|+

Since the last characters now match, we only consider B[1...m — 1] for further
inspection. Because we inserted a single character into A, we again consider

All...n] (because the initial string, i.e. the long white bar and the small red bar,
remains the same). Thus we get:

MED(A[1...n],B[1...m]) =1+ MED(A[L...n],B[1...m — 1]).

So far we have only considered some modifications at the end of the strings.
Since we can delete/insert characters at any position of the string, we need to
generalise our observations.

Let:i € [1...n]andj € [1...m], then for the minimal editing distance of
All...7] and B|1...7] we write MED(i, ;). It is true that:

1+ MEDG —1,j) deletion
MEDC(, j) = min 1 + MED(,j— 1) Insertion
o+ MED(G—-1,;—1) substitution

where 0 = 1 if Al1] # B[] and zero otherwise.

Base Cases

Now that we have established the recurrence relation, it remains to consider the
base cases. Often times, these are just very simple cases, that don’t require a
lot of thinking, but they allow us to generate a solution.

Interactive Example:
A = "TIGER" and B = "ZIEGE"

MED(i,}) - T I G E R

1+ MED@G - 1,j) deletion

MED(, j) = min 1+ MED(,j—1) Iinsertion where 6 = 1 if A[i] # B[j] and zero otherwise.
o+ MED(G —-1,j—1) substitution

MED(i,)) - T I G E R
0 1 2 3 4 5
1
2
3
4
5

1+ MED@G - 1,j) deletion

MED(, j) = min 1+ MED(,j—1) Iinsertion where 6 = 1 if A[i] # B[j] and zero otherwise.
o+ MED(G —-1,j—1) substitution

MED(i,)) - T G E R
0 1 3 4 5
1 1 3 4 5
2
3
4
5

MEDC(, j) = min

1+ MED@G - 1,j) deletion

1 + MEDG, j — 1)

Insertion

o+ MED(G —-1,j—1) substitution

where 0 = 1 if A[i] # B]|j] and zero otherwise.

MED(i,)) - T I G E R
0 1 2 3 4 5
1 1 2 3 4 5
2 2 1 2 3 4
3 3 2 2 2 3
4 4 3 2 3 3
5 5 4 3 2 3

1+ MED@G - 1,j) deletion

MED(, j) = min 1+ MED(,j—1) Iinsertion where 6 = 1 if A[i] # B[j] and zero otherwise.
o+ MED(G —-1,j—1) substitution

Runtime? Space Complexity?

e the table is m by n, thus the space complexity is in O(nm)

 each cell can be computed in O(1), we have m - n cells, thus the runtime is in

O(mn)

