Week 6 — Sheet 5

Algorithms and Data Structures

Debriefing of Submissions

$$\sum_{i=1}^{\log_2(n)} \log_2(n) - i + 1$$

Notice that if i=1 then $\log_2(n)-i+1=\log_2(n)$, and if $i=\log_2(n)$ then $\log_2(n)-i+1=1$.

$$\sum_{i=1}^{\log_2(n)} \log_2(n) - i + 1$$

Notice that if i=1 then $\log_2(n)-i+1=\log_2(n)$, and if $i=\log_2(n)$ then $\log_2(n)-i+1=1$.

We sum from 1 to $log_2(n)$, using Gauss' sum formula we get:

$$\sum_{i=1}^{\log_2(n)} \log_2(n) - i + 1 = \frac{\log_2(n)(\log_2(n) + 1)}{2}$$

(b) Describe an algorithm that determines the *smallest* integer $T \in \mathbb{N}$ such that $f(T) \geq N$, making $O(\log T)$ function calls to f. Prove that your algorithm is correct, and uses at most the desired number of function calls.

Hint: Consider using a two-step approach. In the first step, apply the algorithm of part (a). For the second step, modify the binary search algorithm and apply it to the array $\{1, 2, \ldots, T_{\rm ub}\}$. Use helper variables $i_{\rm low}, i_{\rm high} \in \mathbb{N}$, that satisfy $i_{\rm low} \leq T \leq i_{\rm high}$ at all times during the algorithm. In each iteration, update $i_{\rm low}$ and/or $i_{\rm high}$ so that the number of remaining options for T is halved.

Solutions didn't really use the array they described in the hint. Careful because of array initialisation.

Exercise Sheet 5

Debriefing of Exercise Sheet 5

Theory Recap

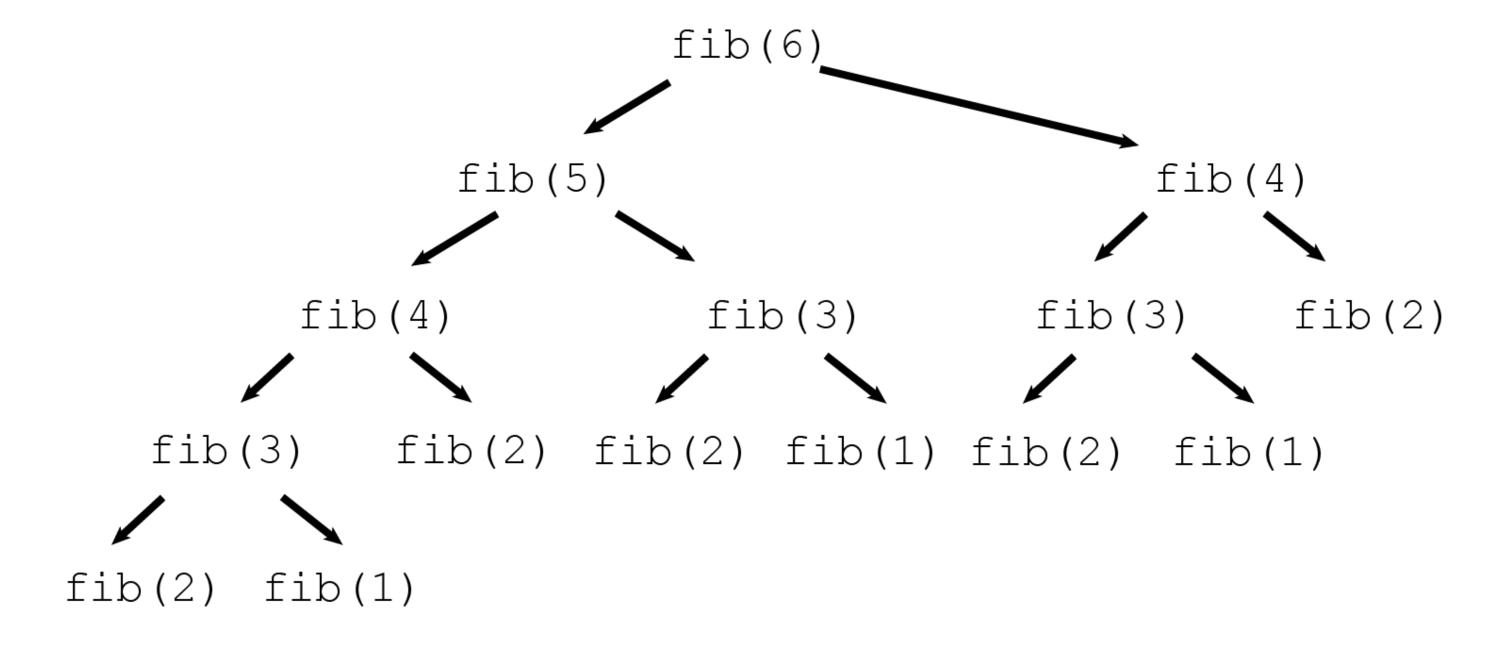
Dynamic Programming (DP)

What is DP and why is it useful?

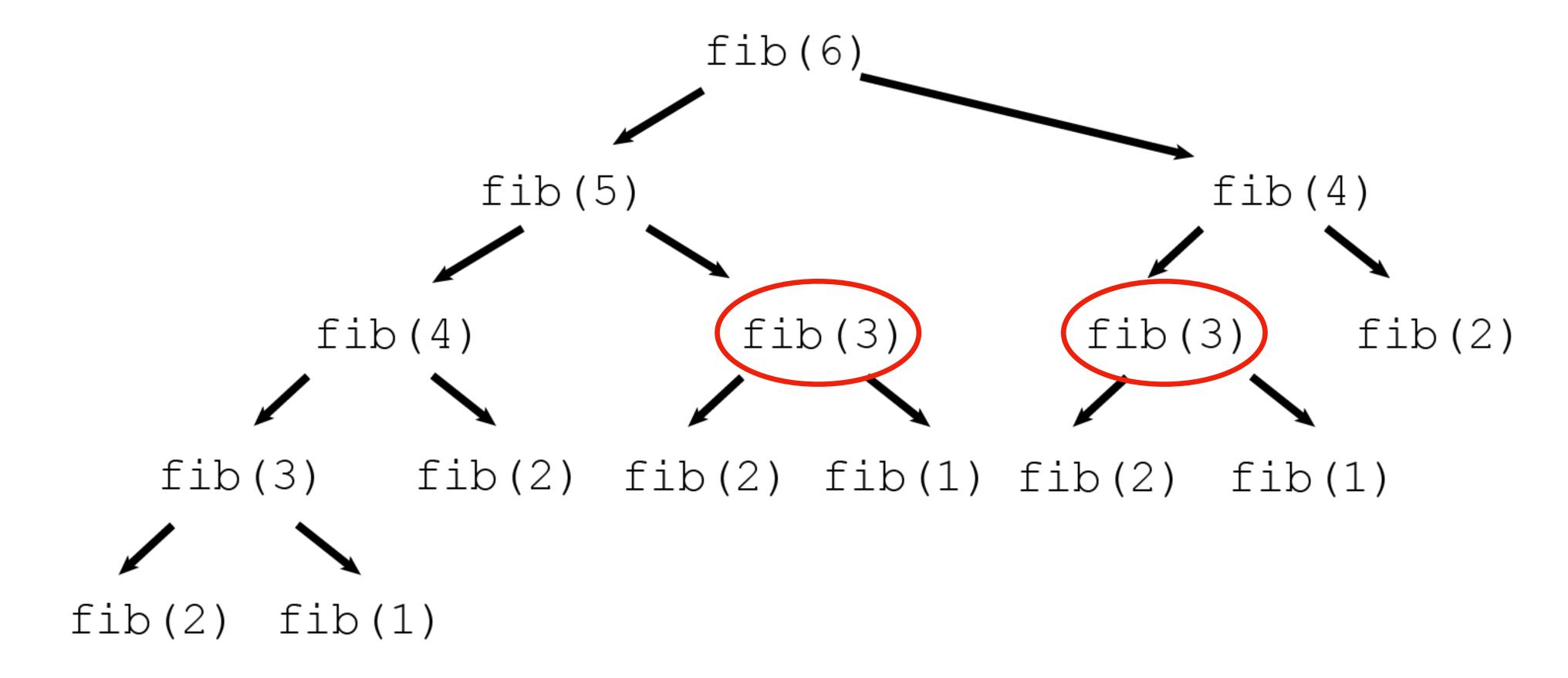
In Dynamic Programming, we try to simplify a complex problem by breaking it down to simpler sub-problems in a recursive manner.

Why is it useful? Example

Consider the Fibonacci Example from the lecture.



https://willrosenbaum.com/teaching/2021s-cosc-112/notes/recursive-fibonacci/



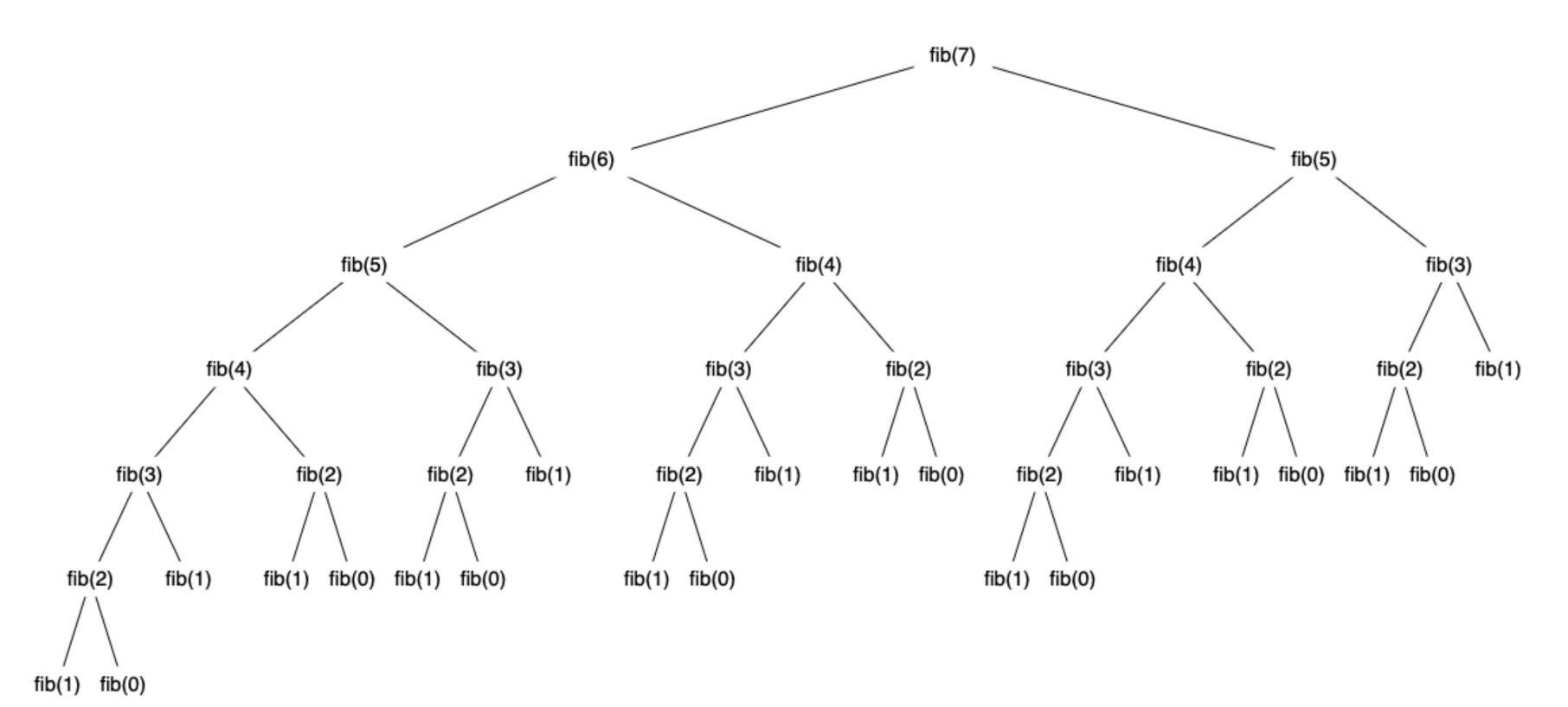
https://willrosenbaum.com/teaching/2021s-cosc-112/notes/recursive-fibonacci/

Using DP we can make improvements

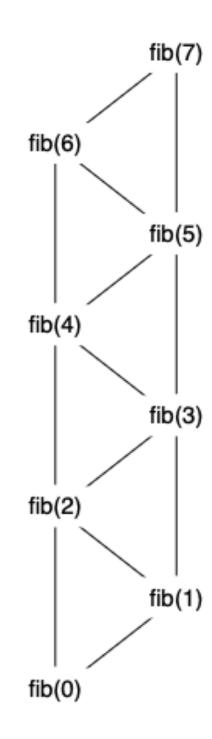
https://programming.guide/dynamic-programming-vs-memoization-vs-tabulation.html

Doesn't seem very useful?

$O(2^n)$



O(n)



https://programming.guide/dynamic-programming-vs-memoization-vs-tabulation.html

Top-Down vs Bottom-Up

```
fib_mem(n) {
    if (mem[n] is not set)
        if (n < 2) result = n
        else result = fib_mem(n-2) + fib_mem(n-1)
        mem[n] = result
    return mem[n]
}</pre>
```

Top-Down

(Memoization)

```
fib_tab(n) {
    mem[0] = 0
    mem[1] = 1
    for i = 2...n
        mem[i] = mem[i-2] + mem[i-1]
    return mem[n]
}
```

Bottom-Up

(Tabulation)

DP is not easy.

But it can be mastered through practice!

How to solve DP problems?

- 1. Understand the problem
- 2. Find/Design recurrence relation (i.e. how the smaller sub-problems relate to each other)
- 3. Translate it to code (CodeExpert)

Hardest part?

Finding the recurrence relation

- Go through examples
- Construct your own examples
- Once you have an idea, try to simulate it

Minimal Editing Distance

Step 1: Understand the Problem

Minimal Editing Distance

(Edit Distance, Levenshtein Distance)

Given two strings A[1...n] and B[1...m], what is the minimum number of single-character edits (insertion, deletion, substitution) required to turn one word into the other word?

Step 2: Design Recurrence Relation

$$A[1...n] =$$

$$B[1...m] =$$

$$A[1...n-1] + A[n] =$$

$$B[1...m-1]+B[m] =$$

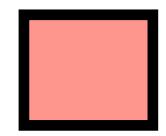
What if = ?

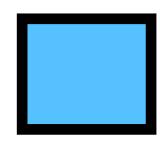
lf

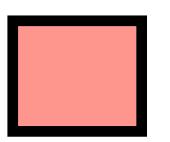
, then for the minimal edit distance (MED) we know:

$$MED(A[1...n], B[1...m]) = MED(A[1...n-1], B[1...m-1]).$$

If we replace (substitution) with we again have







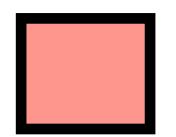
With the difference being that we made one edit operation, thus we have

$$MED(A[1...n], B[1...m]) = 1 + MED(A[1...n-1], B[1...m-1]).$$

In some cases though, it can be beneficial to either delete or insert characters depending the length of A and B.

For example, if we have A = ABCDX and B = ABCD then we simply delete X from A or insert X into B.

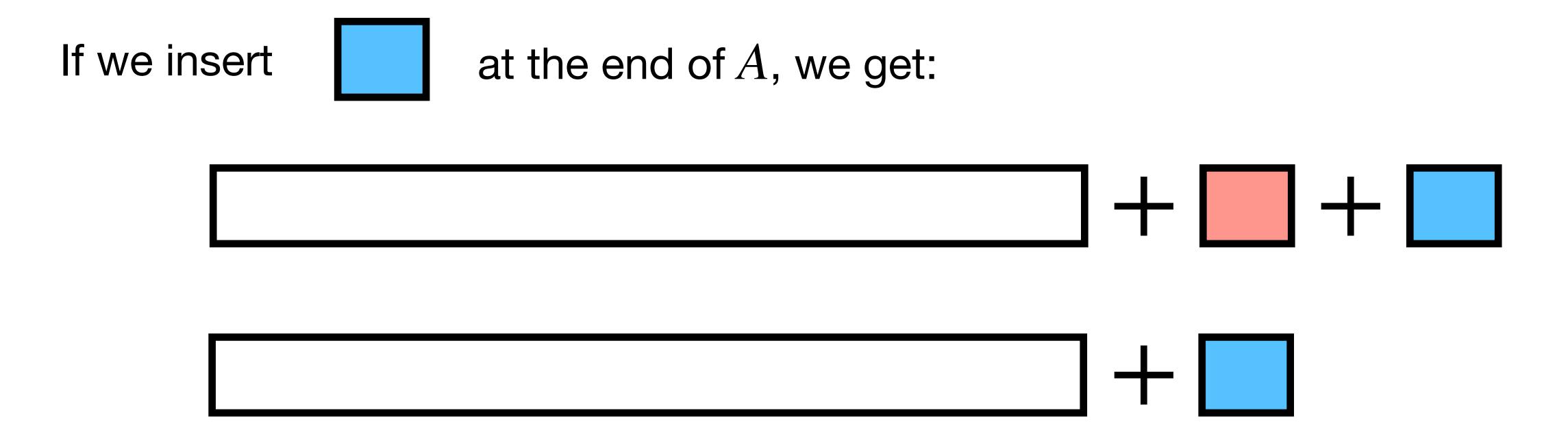
If we delete



from A, we reduce the length of A by one and only consider

A[1...n-1] for further inspection. However B doesn't change at all, and therefore we still have to consider B[1...m]. Thus we get:

MED(A[1...n], B[1...m]) = 1 + MED(A[1...n - 1], B[1...m]).



Since the last characters now match, we only consider B[1...m-1] for further inspection. Because we inserted a single character into A, we again consider A[1...n] (because the initial string, i.e. the long white bar and the small red bar, remains the same). Thus we get:

$$MED(A[1...n], B[1...m]) = 1 + MED(A[1...n], B[1...m - 1]).$$

So far we have only considered some modifications at the end of the strings. Since we can delete/insert characters at any position of the string, we need to generalise our observations.

Let $i \in [1...n]$ and $j \in [1...m]$, then for the minimal editing distance of A[1...i] and B[1...j] we write MED(i,j). It is true that:

$$\mathsf{MED}(i,j) = \min \left\{ \begin{aligned} 1 + \mathsf{MED}(i-1,j) & \text{deletion} \\ 1 + \mathsf{MED}(i,j-1) & \text{insertion} \\ \delta + \mathsf{MED}(i-1,j-1) & \text{substitution} \end{aligned} \right\}$$

Base Cases

Now that we have established the recurrence relation, it remains to consider the base cases. Often times, these are just very simple cases, that don't require a lot of thinking, but they allow us to generate a solution.

Interactive Example: A = "TIGER" and B = "ZIEGE"

MED(i,j)	_	T	G	E	R
-					
Z					
E					
G					
E					

$$\mathsf{MED}(i,j) = \min \left\{ \begin{array}{ll} 1 + \mathsf{MED}(i-1,j) & \mathsf{deletion} \\ 1 + \mathsf{MED}(i,j-1) & \mathsf{insertion} \\ \delta + \mathsf{MED}(i-1,j-1) & \mathsf{substitution} \end{array} \right\}$$

MED(i,j)	-	T		G	E	R
	0	1	2	3	4	5
Z	1					
	2					
E	3					
G	4					
E	5					

$$\mathsf{MED}(i,j) = \min \left\{ \begin{array}{ll} 1 + \mathsf{MED}(i-1,j) & \mathsf{deletion} \\ 1 + \mathsf{MED}(i,j-1) & \mathsf{insertion} \\ \delta + \mathsf{MED}(i-1,j-1) & \mathsf{substitution} \end{array} \right\}$$

MED(i,j)	-	T		G	E	R
-	0	1	2	3	4	5
Z	1	1	2	3	4	5
	2					
E	3					
G	4					
E	5					

$$\mathsf{MED}(i,j) = \min \left\{ \begin{array}{ll} 1 + \mathsf{MED}(i-1,j) & \mathsf{deletion} \\ 1 + \mathsf{MED}(i,j-1) & \mathsf{insertion} \\ \delta + \mathsf{MED}(i-1,j-1) & \mathsf{substitution} \end{array} \right\}$$

MED(i,j)		T		G	E	R
	0	1	2	3	4	5
Z	1	1	2	3	4	5
	2	2	1	2	3	4
E	3	3	2	2	2	3
G	4	4	3	2	3	3
E	5	5	4	3	2	3

$$\mathsf{MED}(i,j) = \min \left\{ \begin{array}{ll} 1 + \mathsf{MED}(i-1,j) & \mathsf{deletion} \\ 1 + \mathsf{MED}(i,j-1) & \mathsf{insertion} \\ \delta + \mathsf{MED}(i-1,j-1) & \mathsf{substitution} \end{array} \right\}$$

Runtime? Space Complexity?

- the table is m by n, thus the space complexity is in O(nm)
- each cell can be computed in O(1), we have $m \cdot n$ cells, thus the runtime is in O(mn)