
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 23 October 2023
Johannes Lengler, David Steurer
Lucas Slot, Manuel Wiedmer, Hongjie Chen, Ding Jingqiu

Algorithms & Data Structures Exercise sheet 5 HS 23

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 30 October 2023.

Exercises that are marked by ⇤ are challenge exercises. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Sorting.

Exercise 5.1 Sorting algorithms.

Below you see four sequences of snapshots, each obtained in consecutive steps of the execution of
one of the following algorithms: InsertionSort, SelectionSort, QuickSort, MergeSort, and
BubbleSort. For each sequence, write down the corresponding algorithm.

3 6 5 1 2 4 8 7

3 6 5 1 2 4 8 7

3 5 6 1 2 4 8 7

3 6 5 1 2 4 8 7

3 5 1 2 4 6 7 8

3 1 2 4 5 6 7 8

3 6 5 1 2 4 8 7

3 6 1 5 2 4 7 8

1 3 5 6 2 4 7 8

3 6 5 1 2 4 8 7

3 6 5 1 2 4 7 8

3 6 5 1 2 4 7 8

Exercise 5.2 Guessing an interval (1 point).

Alice and Bob play the following game:

• Alice selects two integers 1  a < b  200, which she keeps secret.

• �en, Alice and Bob repeat the following:

– Bob chooses two integers 0  a0 < b0  201.

– If a = a0 and b = b0, Bob wins.

– If a0 < a and b < b0, Alice tells Bob ‘my numbers are strictly between your numbers!’.
A previous version had the mistake that Alice gave information to Bob when a < a0 and
b0 < b, which has now been corrected to a0 < a and b < b0.

– Otherwise, Alice does not give any clue to Bob.

(a) Bob claims that he has a strategy to win this game in 12 a�empts at most. Prove that such a strategy
cannot exist.

Hint: Represent Bob’s strategy as a decision tree. Each edge of the decision tree corresponds to one of
Alice’s answers, while each leaf corresponds to a win for Bob.

Hint: A�er de�ning the decision tree, you can consider the sequence k0 = 1 and kn = 2kn�1 + 2 for
n � 1, and prove that kn = 3 · 2n � 2 for any n 2 N0 = N [{0}. �e number of vertices in the
decision tree should be related to kn.

(b)* Can Bob have a strategy to win the game in 13 or 14 a�empts?

Hint: Follow the same strategy as for (a). A�er de�ning the decision tree, try to analyse the number
of leaves in the decision tree corresponding to Bob’s strategy. �e sequence `1 = 1 and `n = 2`n�1+1
for n > 1, for which you can prove `n = 2n � 1 for any n 2 N, might be helpful.

Exercise 5.3 Building a Heap (1 point).

Recall that a binary tree is called complete if all of its layers are fully �lled, except possibly the last layer,
which should be �lled from le� to right. A (max-)heap is a complete binary tree with the extra property
that for any node C with parent P ,

key(P) � key(C). (heap-condition)

In this exercise, we formally prove the correctness of the following algorithm from the lecture, which
adds a new node with key k to an existing, non-empty heap H . We will show that it performs at
most O(log n) comparisons between keys, where n is the number of nodes in the heap H , and that it
maintains the heap structure.

Algorithm 1 Heap insertion
function I�����(H, k)

Add a new node N with key k to the bo�om layer of H , in the le�-most free position. If the
bo�om layer is full, instead create a new layer and add the node in the le�-most position.

P the parent of N
while key(P) < key(N) do . N violates the heap-condition

swap the keys of node N and P .
N P
if N is the root node then

stop
else

P the parent of N

Let H be a heap consisting of n � 1 nodes, and let k 2 N. Let H 0 be the data structure that results
from executing Insert(H, k).

(a) Prove that atmostO(log n) comparisons between keys are performed in the execution of Insert(H, k).

Hint: A�er each iteration of the while-loop, what can you say about the depth of the node N?

(b) LetNstop be the �nal node considered by the algorithm. Prove that all nodes inH 0 with depth less
than or equal to depth(Nstop) satisfy the heap-condition. (A node N satis�es the heap-condition
if it is the root node, or otherwise if key(N)  key(parent(N)).)

2

Hint: Use the fact that H was a heap before we inserted the new node. Consider separately the two
di�erent reasons for the algorithm to terminate.

(c) Let Nstop be the �nal node considered by the algorithm. Prove that all nodes in H 0 with depth
strictly greater than depth(Nstop) satisfy the heap-condition. Using (b), conclude thatH 0 is a heap.

Hint: Let T be the depth of H 0. Use induction to show that a�er t iterations of the while-loop, the
heap-condition is satis�ed by all nodes with depth strictly greater than T � t.

Hint: A�er swapping the keys of nodesN and P in an iteration of the while-loop, which nodes might
potentially no longer satisfy the heap-condition?

Data structures.

Exercise 5.4 Implementing abstract data types.

In the lecture, you saw how we can implement the abstract data type list with operations insert, get,
delete and insertAfter. In this exercise, the goal is to see how we can implement two other abstract
data types, namely the stack (german “Stapel”) and the queue (german “Schlange” or “Warteschlange”).
�e abstract data type stack is, as the name suggests, a stack of elements. For a stack S, we want to
implement the two following operations; see also Figure 1.

• push(x, S): Add x on top of the stack S.

• pop(S): Remove (and return) the top element of the stack S.

x
push

pop

S

Figure 1: Abstract data type stack

�e abstract data type queue is a queue of elements. For a queueQ, we want to implement the following
two operations; see also Figure 2.

• enqueue(x,Q): Add x to the end of Q.

• dequeue(Q): Remove (and return) the �rst element of Q.

(a) Which data structure from the lecture can be used to implement the abstract data type stack e�-
ciently? Describe for the operations push and pop how they would be implemented with this data
structure and what the run time would be.

3

x
enqueuedequeue

Q

Figure 2: Abstract data type queue

(b) Which data structure from the lecture can be used to implement the abstract data type queue e�-
ciently? Describe for the operations enqueue and dequeue how they would be implemented with
this data structure and what the run time would be.

Remark: �e following exercise 5.5 is related to the content of the lecture on Tuesday, October 24.

Exercise 5.5 AVL trees (1 point).

(a) Draw the tree obtained by inserting the keys 3, 8, 6, 5, 2, 9, 1 and 0 in this order into an initially
empty AVL tree. Give also all the intermediate states a�er every insertion and before and a�er each
rotation that is performed during the process.

(b) Consider the following AVL tree.

7

2

0 4

3 6

9

12

Draw the tree obtained by deleting 6, 12, 7 and 4 in this order from this tree. Give also all the
intermediate states a�er every deletion and before and a�er each rotation that is performed during
the process.

4

What was wrong with the first version of
sheet 5 Why did have to be corrected

1 2 a and b b

k a a and bab

BI all other cases

TITO0 0

88 47 0

We observe the three following fait

Each vertex has at most 3 children

F
4have children the other two can

have the same struiture as their

parent

Assuming Bob plays optimally not every

vertex that is not case 11 needs to

have 3 children For example if
1

Bob has figured out Alice's numbers

after a sequenie of steps there

is only one option left case all

The depth of the tree is the number

of guesses Bob has to make in 13

the worst case

Let an man of vertines then

1 n D
kn

aka 2

Note that at root level n s we have

just a single vertex this k 1 2nd

observation 2 we know that we
from
have A win node and possibly maximally

two nodes with the same struture

as their parent thus the recursion

Additionally we have A root for
a total of 2km n th th vertices

for kn tf n 1

If we show he 3.2 2

Now we want to chew how many

possibilities there are and how it

would affect any of Bob's winning

strategies A guaranteed winning strategy

must cover all possibilities

For example let's say someone

throws a fair die a couple times

and each time we sold the number of
the die to a sum that is zero at

the start of the game If the

objestive was that the sum 26

and I say it will only take

a throw to complete the objentive

then you can immediately see that

that only happens if the die shows

6 But what about Atl thinner

Or 2 2 2 This is what we mean

by considering all cases

for lb refer to official solution

If you are comfortable with heaps charlie

are that you quinkly see what's

going on but don't really know how

to write it This is quite common with

And and nothing to be worried about

It takes time and practise

official solutions

LaseNstop rost

Siace Nstop the root is at depth teas there

is nothing to cheek

ii
key P 7 keyInstep This the heap condition

fulfilled for Nstop For all nodes with depth

less than Nstop there was no change

and since Hint It was a heap they

all satisfy the heap condition

The second hint is most important Intuition

b
By transitivity of the z relation i.e

hey x 2 key Y and key 4 2 key 7 keyX Leyla

the heap condition of the children of P is

fulfilled even after swapping the nodes sine

key N Key P A key N key IX for all

x at depth higher than P

for the set of nodes at depth l

for some le IN we write Hye

MI t o

Ast t Hot thus there is nothing to

show

III after t iterations of the white loop

the heap condition is satisfied by all nodes

in H t t for some t

I t na ter

By Itt we know that all nodes in

H T t satisfy the heap condition

We swap keys of N and P in iteration ten

sine we swapped these keys we must have

key N key P By transitivity of the z

relation we now know

key N key X for all Xe H t t

where it is the heap after we swap

We conclude all nodes in H t t fulfill

the heap
condition

At depth exactly t t in H the

only affented nodes are N and a potential

second child of P

Before the swap we had key P 2 keyCD

and key N key P

After the swap we have key P key N

and key P 2 key C This N and C

satisfy the heap condition

Let Tn Tn Ts Tu denote subtrees

AVL Tree insertion cases

Left Left
Z

y Ta Right Rotate t T t

t I in

T T I Ty
it

Left Right

IT t

y F Tu

leftrotatef y'tI I
I

Tr Ts t I

Right Rotate a
I

I m

Ts T T Ty

Right Right

ileft Rotate Z
T

j
z

It It It
Right Left

t t

t Y

Right Rotate I t
It T ItIt

Left Rotate t I
Z y

It

Ave tree rendition

Put differently for any vertex u the height

of the left and right subtree of u can

differ by at most one

It
y

th Dy

b
AUL condition at root not given

Case right left

the 8 By
I

Left Rotate 8 A

a

I I gI I

I
I

I I

é
I

I

I
é

é
AVL condition at not given

Case left left

Right Rotate 2 I

s
I no

I
Ed b
I

bet
I d

ID

AVL condition at 07 not given

Casa left right

fate
2

a 0

D Il

Rotate t
P

D

I b b

B

f D

D D

1 t

