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The solutions for this sheet are submitted at the beginning of the exercise class on 30 October 2023.
Exercises that are marked by * are challenge exercises. They do not count towards bonus points.

You can use results from previous parts without solving those parts.

Sorting,.

Exercise 5.1  Sorting algorithms.

Below you see four sequences of snapshots, each obtained in consecutive steps of the execution of
one of the following algorithms: InsertionSort, SelectionSort, QuickSort, MergeSort, and
BubbleSort. For each sequence, write down the corresponding algorithm.

3 6 51 2 4 8 7 3 6 5 1 2 4 8 7
3 6 51 2 4 8 7 351 2 4 6 7 8
35 6 1 2 4 8 7 31 2 4 5 6 7 8
3 6 51 2 4 8 7 3 6 5 1 2 4 8 7
3 6 1 5 2 4 7 8 3 6 51 2 4 7 8
1 3 5 6 2 4 7 8 3 6 5 1 2 4 7 8

Exercise 5.2  Guessing an interval (1 point).

Alice and Bob play the following game:
« Alice selects two integers 1 < a < b < 200, which she keeps secret.
« Then, Alice and Bob repeat the following:

— Bob chooses two integers 0 < a’ < &' < 201.

Ifa =a' and b = V', Bob wins.

If a’ < aand b < ¥/, Alice tells Bob ‘my numbers are strictly between your numbers!’.
A previous version had the mistake that Alice gave information to Bob when a < a’ and
b < b, which has now been corrected to @’ < a and b < V.

Otherwise, Alice does not give any clue to Bob.



(a) Bob claims that he has a strategy to win this game in 12 attempts at most. Prove that such a strategy
cannot exist.

Hint: Represent Bob’s strategy as a decision tree. Each edge of the decision tree corresponds to one of
Alice’s answers, while each leaf corresponds to a win for Bob.

Hint: After defining the decision tree, you can consider the sequence kg = 1 and k,, = 2k,,—1 + 2 for
n > 1, and prove that k, = 3 -2" — 2 for anyn € Ny = N U {0}. The number of vertices in the
decision tree should be related to k,,.

(b)* Can Bob have a strategy to win the game in 13 or 14 attempts?

Hint: Follow the same strategy as for (a). After defining the decision tree, try to analyse the number
of leaves in the decision tree corresponding to Bob’s strategy. The sequence {1 = 1 and {,, = 20,,_1 +1
for n > 1, for which you can prove ¢,, = 2" — 1 for any n € N, might be helpful.

Exercise 5.3  Building a Heap (1 point).

Recall that a binary tree is called complete if all of its layers are fully filled, except possibly the last layer,
which should be filled from left to right. A (max-)heap is a complete binary tree with the extra property
that for any node C' with parent P,

key(P) > key(C). (heap-condition)

In this exercise, we formally prove the correctness of the following algorithm from the lecture, which
adds a new node with key £ to an existing, non-empty heap H. We will show that it performs at
most O(logn) comparisons between keys, where 7 is the number of nodes in the heap H, and that it
maintains the heap structure.

Algorithm 1 Heap insertion

function INSErRT(H, k)
Add a new node N with key k to the bottom layer of H, in the left-most free position. If the
bottom layer is full, instead create a new layer and add the node in the left-most position.
P < the parent of N
while key(P) < key(N) do > N violates the heap-condition
swap the keys of node N and P.
N+ P
if N is the root node then
stop
else
P <+ the parent of N

Let H be a heap consisting of n > 1 nodes, and let ¥ € N. Let H' be the data structure that results
from executing Insert(H, k).

(a) Prove that at most O(logn) comparisons between keys are performed in the execution of Insert(H, k).
Hint: After each iteration of the while-loop, what can you say about the depth of the node N ?

(b) Let Nstop be the final node considered by the algorithm. Prove that all nodes in H’ with depth less
than or equal to depth(Ntop) satisfy the heap-condition. (A node NV satisfies the heap-condition
if it is the root node, or otherwise if key (V) < key(parent(N)).)



Hint: Use the fact that H was a heap before we inserted the new node. Consider separately the two
different reasons for the algorithm to terminate.

(c) Let Ngiop be the final node considered by the algorithm. Prove that all nodes in H' with depth
strictly greater than depth(Ngop) satisfy the heap-condition. Using (b), conclude that H' is a heap.

Hint: Let T be the depth of H'. Use induction to show that after t iterations of the while-loop, the
heap-condition is satisfied by all nodes with depth strictly greater than T — t.

Hint: After swapping the keys of nodes N and P in an iteration of the while-loop, which nodes might
potentially no longer satisfy the heap-condition?

Data structures.

Exercise 5.4  Implementing abstract data types.

In the lecture, you saw how we can implement the abstract data type list with operations insert, get,
delete and insert After. In this exercise, the goal is to see how we can implement two other abstract
data types, namely the stack (german “Stapel”) and the queue (german “Schlange” or “Warteschlange”).
The abstract data type stack is, as the name suggests, a stack of elements. For a stack S, we want to
implement the two following operations; see also Figure 1.

« push(z,S): Add = on top of the stack S.

« pop(S): Remove (and return) the top element of the stack S.

push

bop

Figure 1: Abstract data type stack

The abstract data type queue is a queue of elements. For a queue (), we want to implement the following
two operations; see also Figure 2.

« enqueue(z, Q): Add x to the end of Q.
« dequeue(Q): Remove (and return) the first element of Q.

(a) Which data structure from the lecture can be used to implement the abstract data type stack effi-
ciently? Describe for the operations push and pop how they would be implemented with this data
structure and what the run time would be.



dequeue enqueue
< B X

Figure 2: Abstract data type queue

(b) Which data structure from the lecture can be used to implement the abstract data type queue effi-

ciently? Describe for the operations enqueue and dequeue how they would be implemented with
this data structure and what the run time would be.

Remark: The following exercise 5.5 is related to the content of the lecture on Tuesday, October 24.

Exercise 5.5  AVL trees (1 point).

(a) Draw the tree obtained by inserting the keys 3, 8, 6, 5, 2, 9, 1 and 0 in this order into an initially
empty AVL tree. Give also all the intermediate states after every insertion and before and after each
rotation that is performed during the process.

(b) Consider the following AVL tree.

Draw the tree obtained by deleting 6, 12, 7 and 4 in this order from this tree. Give also all the

intermediate states after every deletion and before and after each rotation that is performed during
the process.



Exercise 5.2  Guessing an interval (1 point).

Alice and Bob play the following game:

+ Alice selects two integers 1 < a < b < 200, which she keeps secret.

+ Then, Alice and Bob repeat the following:

Bob chooses two integers 0 < a’ < b’ < 201.

Ifa = a’ and b = b, Bob wins.

If a’ < aand b < b/, Alice tells Bob ‘my numbers are strictly between your numbers!’.
A previous version had the mistake that Alice gave information to Bob when a < «’ and
b’ < b, which has now been correctedto @’ < aand b < V.

Otherwise, Alice does not give any clue to Bob.

(a) Bob claims that he has a strategy to win this game in 12 attempts at most. Prove that such a strategy
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cannot exist.

Hint: Represent Bob’s strategy as a decision tree. Each edge of the decision tree corresponds to one of
Alice’s answers, while each leaf corresponds to a win for Bob.

Hint: After defining the decision tree, you can consider the sequence kg = 1 and k,, = 2k,,_1 + 2 for

n > 1, and prove that k, = 3 - 2" — 2 foranyn € Ny = NU {0}. The number of vertices in the
decision tree should be related to k,,.
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« Base Case.
Forn = 0, we have kg = 1 = 3 - 20 — 2, so the base case holds.

+ Induction Hypothesis.
Assume that the statement holds for j € N, ie, k; =3 -2/ — 2.

+ Inductive Step.
We compute

kj_H:2kj+2:2.(3.2j_2)+2:3.2j+1_4+2:3.2j+1_2.

Thus, the statement also holds for j + 1. By the principle of mathematical induction, we have
kyp =3-2" — 2 forany n € Ny.
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Next, we want to count the number of pairs Alice can choose. Once she has chosen b, she has b — 1
possibilities for a (the numbers in the set {1,2,...,b — 1}). Thus, the total number of pairs Alice
can choose is

200 200
200 - 201
b—1) = b|—200=" 0 —200=1

where the second equality uses > > ;i = "(nQH) for any n € N, which was proven in exercise 0.1.

In order for Bob’s strategy to allow him to win for any pair of integers chosen by Alice, the tree
representing his strategy must have at least 19900 leaves (one for each choice of Alice). If Bob’s
statement is true (i.e. he wins after at most 12 turns), this tree has depth at most 12 and therefore at
most k12 vertices. Since k12 = 12286 < 19900, the decision tree corresponding to Bob’s strategy
cannot have 19900 leaves, hence Bob cannot certainly win in at most 12 attemps.
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Exercise 5.3  Building a Heap (1 point).

Recall that a binary tree is called[gomglete if all of its layers are fully filled, except possibly the last layer,
which should be filled from left to righﬂ A (max-)heap is a complete binary tree with the extra property
that for any node C with parent P,

key(P) > key(C). (heap-condition)

In this exercise, we formally prove the correctness of the following algorithm from the lecture, which
adds a new node with key k to an existing, non-empty heap H. We will show that it performs at
most O(log n) comparisons between keys, where n is the number of nodes in the heap H, and that it
maintains the heap structure.

Algorithm 1 Heap insertion

function INSErRT(H, k)
Add a new node N with key £ to the bottom layer of H, in the left-most free position. If the
bottom layer is full, instead create a new layer and add the node in the left-most position.
P < the parent of N
while key(P) < key(N) do > N violates the heap-condition
swap the keys of node N and P.
N« P
if N is the root node then
stop
else
P <« the parent of N

Let H be a heap consisting of n > 1 nodes, and let k¥ € N. Let H' be the data structure that results
from executing Insert(H, k).
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(a) Prove that at most O(logn) comparisons between keys are performed in the execution of Insert( H, k).

Hint: After each iteration of the while-loop, what can you say about the depth of the node N ?
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(b) Let Ngtop be the final node considered by the algorithm. Prove that all nodes in H' with depth less
than or equal to depth(Ntop,) satisfy the heap-condition. (A node N satisfies the heap-condition
if it is the root node, or otherwise if key (V) < key(parent(N)).)

Hint: Use the fact that H was a heap before we inserted the new node. Consider separately the two
different reasons for the algorithm to terminate.
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(c) Let Nstop be the final node considered by the algorithm. Prove that all nodes in H’ with depth
strictly greater than depth(Ngtop) satisfy the heap-condition. Using (b), conclude that H’ is a heap.

Hint: Let T be the depth of H'. Use induction to show that after t iterations of the while-loop, the
heap-condition is satisfied by all nodes with depth strictly greater than T — t.

Hint: After swapping the keys of nodes N and P in an iteration of the while-loop, which nodes might
potentially no longer satisfy the heap-condition?
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To conclude, it remains to note that depth(Nstop) = 1" — tstop, Where tsiop is the total number of
iterations of the while-loop in the execution of Insert(H, k).
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Exercise 5.5  AVL trees (1 point).

(a) Draw the tree obtained by inserting the keys 3, 8, 6, 5, 2, 9, 1 and 0 in this order into an initially
empty AVL tree. Give also all the intermediate states after every insertion and before and after each
rotation that is performed during the process.

Al L tree C/OV\O\lHW\ :

Sei nun 7' ein Baum mit der Wurzel v, der linke Teilbaum von v sei Tl(v), und  STRUKTUR-
T, (v) der rechte (man beachte, dass sowohl Tj(v) als auch T,.(v) ein Blatt, d.h. ein BEDINGUNG
Nullzeiger, sein kénnen). Wir definieren die Balance des Knotens v als

bal(v) := A(T(v)) — h(Ti(v)), (104)

wobei h(T;(v)) bzw. h(Ty(v)) die Hohe von T;(v) bzw. T,(v) angeben. Die AVL- AVL-BEDINGUNG
Bedingung besagt nun, dass fiir alle Knoten v des Baums bal(v) € {—1,0, 1} gilt.
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(b) Consider the following AVL tree.

Draw the tree obtained by deleting 6, 12, 7 and 4 in this order from this tree. Give also all the
intermediate states after every deletion and before and after each rotation that is performed during
the process.
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