Eidgendssische Ecole polytechnique fédérale de Zurich
Technische Hochschule Politecnico federale di Zurigo
Zirich Federal Institute of Technology at Zurich

Departement of Computer Science 16 October 2023
Johannes Lengler, David Steurer
Lucas Slot, Manuel Wiedmer, Hongjie Chen, Ding Jingqiu

Algorithms & Data Structures Exercise sheet 4 HS 23

The solutions for this sheet are submitted at the beginning of the exercise class on 23 October 2023.
Exercises that are marked by * are challenge exercises. They do not count towards bonus points.

You can use results from previous parts without solving those parts.

Master theorem. The following theorem is very useful for running-time analysis of divide-and-
conquer algorithms.

Theorem 1 (master theorem). Let a,C' > 0 and b > 0 be constants and T : N — R™ a function such
that for all evenn € N,
T(n) < aT(n/2) + Cn. (1)

Then for alln = 2k ke N,
« Ifb > logya, T(n) < O(n®).
« Ifb=1logya, T(n) < O(n'°829 . logn).!
« Ifb < logya, T(n) < O(nl°829).

If the function T is increasing, then the condition n = 2* can be dropped. If (1) holds with “=", then we
may replace O with © in the conclusion.

This generalizes some results that you have already seen in this course. For example, the (worst-case)
running time of Karatsuba algorithm satisfies 7'(n) < 37'(n/2) + 100n, so a = 3and b = 1 <
log, 3, hence T'(n) < O(n'°823). Another example is binary search: its running time satisfies 7'(n) <
T(n/2)+100,s0a = 1and b = 0 = log, 1, hence T'(n) < O(logn).

Exercise 4.1 Applying the master theorem.
For this exercise, assume that n is a power of two (that is, n = 2k where k € Ny := NU {0}).

(@) LetT(1) = 1,T'(n) = 4T (n/2) + 100n for n > 1. Using the master theorem, show that

T(n) < O(n?).

(b) Let T(1) = 5,T(n) = T(n/2) + 3n for n > 1. Using the master theorem, show that

T(n) < O(n).

"For this asymptotic bound we assume n > 2 so that n'°82% . log n. > 0.

(c) Let T(1) = 4, T(n) = 4T(n/2) + Zn® for n > 1. Using the master theorem, show that

T(n) < O(n2 logn).

Exercise 4.2 Asymptotic notations.

(a) (This subtask is from January 2019 exam). For each of the following claims, state whether it is
true or false. You don’t need to justify your answers.

claim | true false
ogn = O(v/n) | O O
log(n!) > Q(n?) | O O
nF>Qk"),ifl<k<O(1)| O O
logy n* = O(log; n®) | O O

(b) (This subtask is from August 2019 exam). For each of the following claims, state whether it is
true or false. You don’t need to justify your answers.

claim | true false
logn 2 Q(nl/z) O O
log;(n®) = ©(logs(nv™)) | O 0
3t +n24+n>0n?) | O O
(x) nl<Om¥?) | O O

Note that the last claim is challenge. It was one of the hardest tasks of the exam. If you want a 6
grade, you should be able to solve such exercises.

Sorting and Searching.

Exercise 4.3 Formal proof of correctness for Bubble Sort (1 point).

Recall the bubble sort algorithm that was introduced in the lecture.

Algorithm 1 Bubble Sort (input: array A[l...n]).
forj=1,...,ndo
fort=1,...,n—1do
if A[i] > A[i + 1] then
Swap A[i] and A[i + 1]

Prove correctness of this algorithm by mathematical induction.

Hint: Use the invariant I(j) that was introduced in the lecture: “After j iterations the j largest elements
are at the correct place.”

Exercise 4.4 Exponential search (1 point).

Suppose we are given a positive integer N € N, and a monotonously increasing function f : N — N,
meaning that f(i) > f(j) forall 7,5 € N with ¢ > j. Assume that lim,,_,~ f(n) = co. We are tasked
to determine the smallest integer 7' € N such that f(7") > N.

(a) Describe an algorithm that finds an upper bound Ty, € N on T, such that f(Typ) > N and Ty, <
2T, making O(log T') function calls to f.? Prove that your algorithm is correct, and uses at most
the desired number of function calls.

(b) Describe an algorithm that determines the smallest integer ' € N such that f(T') > N, making
O(log T') function calls to f. Prove that your algorithm is correct, and uses at most the desired
number of function calls.

Hint: Consider using a two-step approach. In the first step, apply the algorithm of part (a). For the
second step, modify the binary search algorithm and apply it to the array {1,2, ..., Ty, }. Use helper
variables 1oy, inigh € N, that satisfy ijow < T < inign at all times during the algorithm. In each
iteration, update i\oy, and/or inigy so that the number of remaining options for T is halved.

Exercise 4.5 Counting function calls in loops (cont’d) (1 point).

For each of the following code snippets, compute the number of calls to f as a function of n € N. We
denote this number by T'(n), i.e. T'(n) is the number of calls the algorithm makes to f depending on
the input n. Then 7 is a function from N to R™. For part (a), provide both the exact number of calls and
a maximally simplified asymptotic bound in © notation. For part (b), it is enough to give a maximally
simplified asymptotic bound in © notation. For the asymptotic bounds, you may assume that n > 10.

Algorithm 2
141
while : < n do
j+1
while 27 < n do
f0
j—j+1
1141

®For the asymptotic bounds here and also in the following we assume 7' > 2 such that log(7") > 0.

Hint: To find the asymptotic bound, it might be helpful to consider n of the formn = 2F.

Algorithm 3
(b) function A(n)
140
while i < n? do
jn
while 7 > 0 do
f0
f0

JJ—1
1—1+1
k3]
for/=0...3do
if £ > 0 then
A(k)
A(k)

You may assume that the function 7' : N — R™ denoting the number of calls of the algorithm to f
is increasing.

Hint: To deal with the recursion in the algorithm, you can use the master theorem.
(c)* Prove that the function 7' : N — R™ from the code snippet in part (b) is indeed increasing.

Hint: You can show the following statement by mathematical induction: “For alln’ € N withn’ <n
we have T'(n' + 1) > T'(n')”.

Exercise 4.3 Formal proof of correctness for Bubble Sort (1 point).

Recall the bubble sort algorithm that was introduced in the lecture.

Algorithm 1 Bubble Sort (input: array A[l . ..n]).

forj=1,...,ndo
fori=1,...,n—1do
if Afi] > A[i + 1] then
Swap A[i| and A[i + 1]

Prove correctness of this algorithm by mathematical induction.

Hint: Use the invariant I(j) that was introduced in the lecture: “After j iterations the j largest elements
are at the correct place.”

Noke Yhat we ggume thek A contams 1o
dup((co}cu (1.0 A[ﬂ f A[)} /W all i,j e (1Y ’l%)

We €8y e elements @// A e (B distinct ™

[ter toe lwevent shoold be A dedon

0 the oo o Koo e 3 éwﬁ{a)r 2l oments

sve ek fhe corveck Wlme.“

b)=
A s ke ﬁ&vyy\’ é(@w\QV\\' 0 ON v[)m\hom /Z %
VU M

the wu/\oél/t‘elj UAVO\,lr 64”’&3 A .

QV\\ 7
A//J(&/‘ Flo /(m)(2 e adiond O/ the Second //

Loop i 0 shll on YUOJ dron AL

Ao (e ae| {&“J

M 9 A = T 4 Ql' = 49\{ _
1€ ..nY

a/iw LA Veration s e bre hece

oy | &y [| @

/ '\(ﬂ \&LE‘O) W({/L\ '\ 7 Z, A[l) Coy\l‘ PR l({l\e
v ey

oo ﬁaqesl' element O

v (
ﬂars%* ¢ g on O\V\B s fle A
S v ayppe 6 to ()os\hov\ 144 Hee, of the en of

e iuners /or (Ooao (QM // /.u)jr outer /ou L oop

deaton) He Largest glement > af ‘poulr,m\ n

IH -

A v ¢ e wvesient ol § /OV J =l o s0e
e N e /{&f [c Fevationd ﬂ/ Yne oAer

(1.c. & l()
o Moyg Hre e Zéfjeoxr dopents &L 6 fle

_orre po ssklon

| S - [l Ao <4

—_—

We must show that the invariant also holds for 5 = k + 1. By the induction hypothesis the k
largest elements are at the correct position after k steps, i.e. at the positions A[n —k +1...n|.
We now consider step k£ + 1. Note that in this iteration the positions of the k largest elements
are not changed since for ¢ > n — k, we will never have A[i] > A[i + 1]. Thus, in order to
show I(k + 1) it is enough to show that after step k + 1 also the (k + 1)st largest element is at
the correct position. The (k + 1)st largest element is the largest element of A[1...n — k| (all
elements that are larger than it come later by I(k)). Thus, by the argumentation in the base case,
after i = n — k — 1 iterations in the second for-loop, it is at position A[n — k|. But for the other
k iterations of the second for-loop, nothing changes as was already argued before (the largest
elements do not change their position). Thus, after step k + 1, the k£ + 1 largest elements are at
the correct position, which shows I(k + 1).

Nolr((,(H’\P\\f f’L\(‘/Q ABDS l/\ﬂl &V\Kﬁ V"\&é{ AN stvmeu\\—-
tor Fhe (LU'/()H\ [Nﬁt)lr Llement bk alw how
the xfe,sk 0/ The é\vmj FeM N umd/\p\t/\b@b |
Thy © reelly \mpgr%w\% o lwcavse the mnen

KODW LInTinue > T Zaa/p unt tne &V\b 07[

the aoras) Luery time . Tan kotwales o

cLight u«od\/u,a)c(ov\ 0/ e Bubble Savt 2lgordhm
dal rthoes fue weler gl depo tebes

o fune WL ZOOF o Con 9oy /Mb i+ 7

ok He wner Zoa/ doesn't haw o o ap

AT R N oind QU&V\J’HVMC , ?JOQ> (¥ 2
By the principle of mathematical induction, I(j) is true for all j € N, j < n. In particular, I(n) holds,

which means that after the first n iterations the n largest elements are at the correct position. This
shows that after n steps the array is sorted, which shows correctness of the Bubble Sort algorithm.

Exercise 4.4 Exponential search (1 point).

Suppose we are given a positive integer N € N, and a monotonously increasing function f : N — N,
meaning that f (i) > f(j) forall i, j € N with ¢ > j. Assume that lim,,_, f(n) = co. We are tasked
to determine the smallest integer T € N such that f(7) > N.

(a) Describe an algorithm that finds an upper bound Ty, € N on T, such that f(Ty,) > N and Ty, <
2T, making O(log T') function calls to f.? Prove that your algorithm is correct, and uses at most

the desired number of function calls.

T dosired dwmbune alesdy el oy e Lot
olook hov one m\yL 0PI 0@ fny EXGrie

Algorithm 2
T+ 1
while f(T) < N do
T+ T-2
Return T’

Correchinesy - e COMW&\{Q (\ c,J\H\ / CTu\ WW&

Th= rl‘A /or -\ ﬁagyp erakion b \/ /or
e-hy /ZZ L have /(Tg) > N | e 5J—o'o end

(thurn . Lok Tub = \Z\V
<

2T natice ool

To grod J(l"&(f .\/u b

/(Tub~4) < N Since /(T))N | (ij the

V’\OV\O\KQV\\('(QB 0/ /

TU\‘O-/\ < T <_~> ZTUb—AS ZT

N '{’b\u> T s T .
64n9 Wb [o, T 7>

vajt(w«é ’ Notice “\QJ[/ ngoleY = 1 >)
'H/\u\ 109 P‘«{ WLOI/\O"O"\IC,L Lﬂ o/ / N W ave

AT) > AT) 2N Troefore dne G
0 esccoked ek o (lm, T1 = 0 oy 7D
Lioes . Snce / o called once peu Loap
beakon, the nunlboer ﬂ/ ralls o // O
w DL @ggT Y oy el

(b) Describe an algorithm that determines the smallest integer 7' € N such that f(7") > N, making

O(log T') function calls to f. Prove that your algorithm is correct, and uses at most the desired
number of function calls.

Hint: Consider using a two-step approach. In the first step, apply the algorithm of part (a). For the
second step, modify the binary search algorithm and apply it to the array {1,2, ..., Typ}. Use helper
variables ilow, inigh € N, that satisfy i1ow < T < inign at all times during the algorithm. In each
iteration, update 10w and/or inign so that the number of remaining options for T' is halved.

rfr to o tne el solutons.

Exercise 4.5 Counting function calls in loops (cont’d) (1 point).

For each of the following code snippets, compute the number of calls to f as a function of n € N. We
denote this number by 7'(n), i.e. T'(n) is the number of calls the algorithm makes to f depending on
the input . Then 7" is a function from N to R*. For part (a), provide both the exact number of calls and
a maximally simplified asymptotic bound in © notation. For part (b), it is enough to give a maximally
simplified asymptotic bound in © notation. For the asymptotic bounds, you may assume that n > 10.

f/c/w J(o 0//{((9& SQLUSV(OV\S /Of (4)

Algorithm 3
(b) function A(n)
10
while i < n? do
jén
while j > 0 do
f0
f0
JeJ—1
i1+ 1
k L’%J
for/=0...3do
if £ > 0 then
A(k)
A(k)

You may assume that the function 7' : N — R™ denoting the number of calls of the algorithm to f
is increasing.

Hint: To deal with the recursion in the algorithm, you can use the master theorem.

bow /o,r i exeise | oau dow'f haw to keeyy tala

O/ tie L% at Nupmbe r 0/ caly fo /f JUSJr-

fhe MﬂV"‘\MO‘r(L cm«p[aydy%. (ot %We O/
Lxlvaise I/ 4/[/\(g\kggm(’b\m« (R recuniyge NS

want to vsg fLe maoster theorom

Theorem 1 (master theorem). Let a,C > 0 and b > 0 be constants and T : N — R™ a function such

that for all evenn € N,
T(n) < aT(n/2) + Cn. (1)

Then for alln = 2k keN,
« Ifb > logy a, T(n) < O(n?).
« Ifb=logya, T(n) < O(n'°®2% - logn).!
. Ifb < log, a, T(n) < O(n'°829),

@8(,9%)) e e /’VB l‘ dOu[O(_L lJ[/\\LQ /ZOOP (>
e foc boop vt gere/ete tue /0[{&/»'!(/_(3 slogroblen s :

g epﬂt/a}‘c J //00—\

function A(n) _
iV:il(j‘.'L'<n,2do \‘Ae el OJ‘/“LQ ZOOF L[VG\:}B »D*ef/ol’l/'_j 2“/\ C‘L('()
Jj<n o / o Thy
Wh118]>()d0 2
10 A .
10 7 = n
jej—1 o
i it J
k(5]
forilf:k(;b‘jhiz The /or Loop ey U 1tevrations .
ﬁﬁi‘% AL s called Awice, s 4L =% times
bt QV\LD 1/ k>0, Cor n=4 Wt bowe k=0, T
ne recwrswe cell L execred and e and v 1
Tn® = 1.4° = 1 cells, 1.e. T = 2. For n2tl
k> o and dhele fove A 1 execohed tuceead
[{'Z'/Q\!((O/\ ' 7(. 8 '('(‘/\,\-(5 . T[’\US
T() = Z(/\(3 ~+ %T(L%)) /m n >
(\)Ou‘ e vse the moster Theorem /9\/ Q=92 { Iy = 2
B O C= 1 . Swnce /eobl a=% =b N NS
Tl = Q(mq’(Oﬁ(m}B /ar n> 7.
Naktice /0/ n< 2 ~e hewe Qﬂgtﬂ <0 | b (U
dae,w\”(mo_lf\e S nse [N {/(/\(CQV\I&Q <X ﬂ/ O'H&'\'Q%(Or\ _

(c)* Prove that the function 7' : N — R™ from the code snippet in part (b) is indeed increasing.

Hint: You can show the following statement by mathematical induction: “For alln' € N withn' < n
we have T'(n' +1) > T(n')".

Solution:

We show the statement suggested in the hint by mathematical induction.

« Base Case.

We have T'(2) = 16 4+ 167'(1) = 32 > 2 = T'(1), so the base case holds as the only n’ € N
that is at most 1is n’ = 1.

+ Induction Hypothesis.
Assume that for some k € N we have T'(k' + 1) > T'(k’) for all ¥’ € N with k¥’ < k.

[S: lve shov T+ » Tlh4)

—_—

Ve uuw\(— ko dhow

L+1

x4+
Tiwe) = 1 k+2) + 9T (szb 7 ?UM/DL +YT(LTB>: T (+n)

To Qo SO Je h B~V Lo Show thol

‘59 e Coun U e ouvr \H

Noko — Fheb \ o
W22\ Lt ok => bz
S < _— Ny
2 h L

Forkner e NS

L+
L&/:,?:J - M/'f%Js R*%J _ eh = LZ(—&LB :[_;/IS

p /O[k = 2L 2ue N /o/ Some fe({\/

u+1 28 11 72 +/ UMj
L bea - [, 2 B+A il)

M&QU\\V\B ‘V’\ﬂ/\’ Lb\/;_zj (3 é(f{/\e/ [J + 7
L(}_(/I The /(/H’ Co-Ne gﬂ\lrfg/le) LZ\ bb{‘

J\/L\L QQLOV\A (enNe g\[;p (/_\Q[[('\A lbecau e

ki1 ()&‘1'4
(1Y halds ound LT F &G\\ﬁ T[[TJ) [j>
T(fws e C_OIN use the (H 3%

TS = 7))

LA (howy

I 44
T = L)’ 4T (P D 7 2k Car(TY) e Tee

By the principle of mathematical induction, for every n € N we have for n’ € N with n’ < n that
T(n'+1) > T(n'). In particular, T'(n + 1) > T'(n) is true for any n € N and the function T is
increasing.

