
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 16 October 2023
Johannes Lengler, David Steurer
Lucas Slot, Manuel Wiedmer, Hongjie Chen, Ding Jingqiu

Algorithms & Data Structures Exercise sheet 4 HS 23

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 23 October 2023.

Exercises that are marked by ⇤ are challenge exercises. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Master theorem. �e following theorem is very useful for running-time analysis of divide-and-
conquer algorithms.

�eorem 1 (master theorem). Let a, C > 0 and b � 0 be constants and T : N ! R+ a function such
that for all even n 2 N,

T (n)  aT (n/2) + Cn
b
. (1)

�en for all n = 2k, k 2 N,

• If b > log2 a, T (n)  O(nb).

• If b = log2 a, T (n)  O(nlog2 a · log n).1

• If b < log2 a, T (n)  O(nlog2 a).

If the function T is increasing, then the condition n = 2k can be dropped. If (1) holds with “=”, then we
may replace O with ⇥ in the conclusion.

�is generalizes some results that you have already seen in this course. For example, the (worst-case)
running time of Karatsuba algorithm satis�es T (n)  3T (n/2) + 100n, so a = 3 and b = 1 <

log2 3, hence T (n)  O(nlog2 3). Another example is binary search: its running time satis�es T (n) 
T (n/2) + 100, so a = 1 and b = 0 = log2 1, hence T (n)  O(log n).

Exercise 4.1 Applying the master theorem.

For this exercise, assume that n is a power of two (that is, n = 2k, where k 2 N0 := N [{0}).

(a) Let T (1) = 1, T (n) = 4T (n/2) + 100n for n > 1. Using the master theorem, show that

T (n)  O(n2).

(b) Let T (1) = 5, T (n) = T (n/2) + 3
2n for n > 1. Using the master theorem, show that

T (n)  O(n).
1For this asymptotic bound we assume n � 2 so that nlog2 a · log n > 0.

(c) Let T (1) = 4, T (n) = 4T (n/2) + 7
2n

2 for n > 1. Using the master theorem, show that

T (n)  O(n2 log n).

Exercise 4.2 Asymptotic notations.

(a) (�is subtask is from January 2019 exam). For each of the following claims, state whether it is
true or false. You don’t need to justify your answers.

claim true false

n
logn  O(

p
n) ⇤ ⇤

log(n!) � ⌦(n2) ⇤ ⇤

n
k � ⌦(kn), if 1 < k  O(1) ⇤ ⇤

log3 n
4 = ⇥(log7 n

8) ⇤ ⇤

(b) (�is subtask is from August 2019 exam). For each of the following claims, state whether it is
true or false. You don’t need to justify your answers.

claim true false

n
logn � ⌦(n1/2) ⇤ ⇤

log7(n
8) = ⇥(log3(n

p
n)) ⇤ ⇤

3n4 + n
2 + n � ⌦(n2) ⇤ ⇤

(⇤) n!  O(nn/2) ⇤ ⇤

Note that the last claim is challenge. It was one of the hardest tasks of the exam. If you want a 6
grade, you should be able to solve such exercises.

Sorting and Searching.

Exercise 4.3 Formal proof of correctness for Bubble Sort (1 point).

Recall the bubble sort algorithm that was introduced in the lecture.

2

Algorithm 1 Bubble Sort (input: array A[1 . . . n]).
for j = 1, . . . , n do

for i = 1, . . . , n� 1 do
if A[i] > A[i+ 1] then

Swap A[i] and A[i+ 1]

Prove correctness of this algorithm by mathematical induction.

Hint: Use the invariant I(j) that was introduced in the lecture: “A�er j iterations the j largest elements
are at the correct place.”

Exercise 4.4 Exponential search (1 point).

Suppose we are given a positive integer N 2 N, and a monotonously increasing function f : N ! N,
meaning that f(i) � f(j) for all i, j 2 N with i � j. Assume that limn!1 f(n) =1. We are tasked
to determine the smallest integer T 2 N such that f(T) � N .

(a) Describe an algorithm that �nds an upper bound Tub 2 N on T , such that f(Tub) � N and Tub 
2T , making O(log T) function calls to f .2 Prove that your algorithm is correct, and uses at most
the desired number of function calls.

(b) Describe an algorithm that determines the smallest integer T 2 N such that f(T) � N , making
O(log T) function calls to f . Prove that your algorithm is correct, and uses at most the desired
number of function calls.

Hint: Consider using a two-step approach. In the �rst step, apply the algorithm of part (a). For the
second step, modify the binary search algorithm and apply it to the array {1, 2, . . . , Tub}. Use helper
variables ilow, ihigh 2 N, that satisfy ilow  T  ihigh at all times during the algorithm. In each
iteration, update ilow and/or ihigh so that the number of remaining options for T is halved.

Exercise 4.5 Counting function calls in loops (cont’d) (1 point).

For each of the following code snippets, compute the number of calls to f as a function of n 2 N. We
denote this number by T (n), i.e. T (n) is the number of calls the algorithm makes to f depending on
the input n. �en T is a function fromN toR+. For part (a), provide both the exact number of calls and
a maximally simpli�ed asymptotic bound in ⇥ notation. For part (b), it is enough to give a maximally
simpli�ed asymptotic bound in ⇥ notation. For the asymptotic bounds, you may assume that n � 10.

Algorithm 2
(a) i 1

while i  n do
j i

while 2j  n do
f()
j j + 1

i i+ 1

2For the asymptotic bounds here and also in the following we assume T � 2 such that log(T) > 0.

3

Hint: To �nd the asymptotic bound, it might be helpful to consider n of the form n = 2k.

Algorithm 3
(b) function A(n)

i 0
while i < n

2 do
j n

while j > 0 do
f()
f()
j j � 1

i i+ 1
k bn2 c
for l = 0 . . . 3 do

if k > 0 then
A(k)
A(k)

You may assume that the function T : N! R+ denoting the number of calls of the algorithm to f
is increasing.

Hint: To deal with the recursion in the algorithm, you can use the master theorem.

(c)* Prove that the function T : N! R+ from the code snippet in part (b) is indeed increasing.

Hint: You can show the following statement by mathematical induction: “For all n0 2 N with n
0  n

we have T (n0 + 1) � T (n0)”.

4

Note that we assume that A contains no

duplicates i.e Ali Ali for all i je la nl it

We say the elements of A are pairwise distinct

further the Invariant should be After j iterations

oftheouterferloop the j largest elements

sue at the correct place

IBI j n

Assume the largest element is on position l of

the unmodified input array A

After the first l a iterations of the
serond for

loop it is still on position l

A 212 1231 ir 2enlael 1a

maxA YI nfi de

after l l iterations we
there

for all further steps with it l Ali contains the

largest element
and thus the largest element is

swapped to position it 1 Henie at the end of

the inner for loop end of first outer for loop
iteration the largest element is at position n

I
Assume the invariant holds for j le for some

KEIN sie after k iterations of the outer

for loop the k largest elements are at the

couret position

I Kris her

Notice that there was not only made an argument

for the iktalth largest element but also how

the rest of the array remains unchanged

This is really important because the inner

loop continues to loop until the end of

the array everytime This motivates a

slight modification of the BubbleSort algorithm

that reduces the number of steps taken

in the inner loop Can you find it
Hint the inner loop doesn't have to go
until the end everytime does it

The desired runtime already tells us a lot

about how one might approach this exercise

correctness we compare N with f Ta where

The 2h for each loop iteration K If for

any I ve have fitz 2N we stop and

return Let Tub Tt

To show that Tus E 2T notice that

F Tub n C N Since f Tl 2N by the

monotoninity of f
Tub n E T c 2Tub ne 2T

and th Tub E 2T

Runtime Notice that Tree 2 T'sT
tha by the monotonicity of f we have

f Treaty f TI 2N Therefore the loop

is executed at most flog.tl e Oleogt

times Since f is called once per loop

iteration the number of calls to f is

in DClost as well

refer to the offical solutions

refer to affinal solutions for 121

Now for this exercise you don't have to keep track

of the stat number of calls to f just
the asymptotic complexity For this type of
exercise if the algorithm is recursive we

want to use the master theorem

Because the first double while loop is separated from

the for loop we generate the following subproblem

The inner while loop always performs 2n call

I
to f This

Éjan ins

J
the for loop has 4 iterations

Ach is called twine so 4.2 8 times

but only if k 0 for n n we have k d thus

no recursive call is executed and we end up with

2n 2.13 2 calls i.e TCA 2 For n 22

k 0 and therefore Ach is executed twice each

iteration i.e 8 times Thus

TCL 2n t 8TH for na

Now we use the master theorem for 2 8 b 3

and C 2 Sine log a 3 b we have

Thu A n'login for n 22

Notice for ne n we have login co which

doesn't make sense in the context of D notation

If we show TCat 2 TChts

We want to show

TCU12 Catz 8T CI 24 1 85M Then

To do so we have to show that

a E k

e CI Ets
so we can use our IH

Notice that

hf e tf I k e hen a

further we have

for k Zeta sold for some le IN

LEI LEI let en CE E

e for k 2h even for some len

left ES en Effin E in

Meaning that hf is either tf th

II The first case satisfies 2 but

the second case also works because

G holds and we just say TLE THE

Thus we can use the Itt to get

TILES TILE
which shows

TCU12 Catz 8T CI 24 1 8TTE Tan

