
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 9 October 2023
Johannes Lengler, David Steurer
Lucas Slot, Manuel Wiedmer, Hongjie Chen, Ding Jingqiu

Algorithms & Data Structures Exercise sheet 3 HS 23

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 16 October 2023.

Exercises that are marked by ⇤ are challenge exercises. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Asymptotic Notation
�e following two de�nitions are closely related to the O-notation and are also useful in the running
time analysis of algorithms. Let N be again a set of possible inputs.

De�nition 1 (⌦-Notation). For f : N ! R+,

⌦(f) := {g : N ! R+ | f  O(g)}.

We write g � ⌦(f) instead of g 2 ⌦(f).

De�nition 2 (⇥-Notation). For f : N ! R+,

⇥(f) := {g : N ! R+ | g  O(f) and f  O(g)}.

We write g = ⇥(f) instead of g 2 ⇥(f).

In other words, for two functions f, g : N ! R+ we have

g � ⌦(f), f  O(g)

and
g = ⇥(f), g  O(f) and f  O(g).

We can restate�eorem 1 from exercise sheet 2 as follows.

�eorem 1 (�eorem 1.1 from the script). Let N be an in�nite subset of N and f : N ! R+ and
g : N ! R+.

• If lim
n!1

f(n)
g(n) = 0, then f  O(g), but f 6= ⇥(g).

• If lim
n!1

f(n)
g(n) = C 2 R+, then f = ⇥(g).

• If lim
n!1

f(n)
g(n) =1, then f � ⌦(g), but f 6= ⇥(g).

Exercise 3.1 Asymptotic growth (2 points).

For all the following functions the variable n ranges over N.

(a) Prove or disprove the following statements. Justify your answer.

(1) 1
5n

3 � ⌦(10n2)

(2) n
2 + 3n = ⇥(n2 log(n))

(3) 5n4 + 3n2 + n+ 8 = ⇥(n4)

(4) 3n � ⌦(2n)

(b) Prove the following statements.

Hint: For these examples, computing the limits as in�eorem 1 is hard or the limits do not even exist.
Try to prove the statements directly with inequalities as in the de�nition of the O-notation.

(1) (sin(n) + 2)n = ⇥(n)

Hint: For any x 2 R we have �1  sin(x)  1.

(2)
Pn

i=1

Pi
j=1 j = ⇥(n3)

Hint: In order to show n
3  O(

Pn
i=1

Pi
j=1 j), you can use exercise 1.3.

(3) log(n4 + n
3 + n

2)  O(log(n3 + n
2 + n))

(4)*
Pn

i=1

p
i = ⇥(n

p
n)

Hint: Recall again exercise 1.3 and try to do an analogous computation here.

Exercise 3.2 Substring counting.

Given a n-bit bitstring S (an array over {0, 1} of size n 2 N), and an integer k � 0, we would like to
count the number of nonempty substrings of S with exactly k ones. For example, when S = “0110”
and k = 2, there are 4 such substrings: “011”, “11”, “110”, and “0110”.

(a) Design a “naive” algorithm that solves this problem with a runtime of O(n3). Justify its runtime
and correctness.

(b) We say that a bitstring S
0 is a (non-empty) pre�x of a bitstring S if S0 is of the form S[0..i] where

0  i < length(S). For example, the pre�xes of S = “0110” are “0”, “01”, “011” and “0110”.

Given a n-bit bitstring S, we would like to compute a table T indexed by 0..n such that for all i,
T [i] contains the number of pre�xes of S with exactly i ones.

For example, for S = “0110”, the desired table is T = [1, 1, 2, 0, 0], since, of the 4 pre�xes of S, 1
pre�x contains zero “1”, 1 pre�x contains one “1”, 2 pre�xes contain two “1”, and 0 pre�x contains
three “1” or four “1”.

Describe an algorithm ����������� that computes T from S in time O(n), assuming S has size n.

Remark: �is algorithm can also be applied on a reversed bitstring to compute the same table for
all su�xes of S. In the following, you can assume an algorithm ����������� that does exactly this.

(c) Let S be a n-bit bitstring. Consider an integer m 2 {0, . . . , n� 1}, and divide the bitstring S into
two substrings S[0..m] and S[m + 1..n � 1]. Using ����������� and �����������, describe an
algorithm ��������(m, k, S) that returns the number of substrings S[i..j] of S that have exactly
k ones and such that i  m < j. What is its complexity?

2

For example, if S = “0110”, k = 2, and m = 0, there exist exactly two such strings: “011” and
“0110”. Hence, ��������(m, k, S) = 2.

Hint: Each substring S[i..j] with i  m < j can be obtained by concatenating a string S[i..m] that
is a su�x of S[0..m] and a string S[m+ 1..j] that is a pre�x of S[m+ 1..n� 1].

(d)* Using ��������, design an algorithmwith a runtime1 of at mostO(n log n) that counts the number
of nonempty substrings of a n-bit bitstring S with exactly k ones. (You can assume that n is a power
of two.)

Hint: Use the recursive idea from the lecture.

Exercise 3.3 Counting function calls in loops (1 point).

For each of the following code snippets, compute the number of calls to f as a function of n 2 N.
Provide both the exact number of calls and a maximally simpli�ed asymptotic bound in ⇥ notation.

Algorithm 1
(a) i 0

while i  n do
f()
f()
i i+ 1

j 0
while j  2n do

f()
j j + 1

Algorithm 2
(b) i 1

while i  n do
j 1
while j  i

3 do
f()
j j + 1

i i+ 1

Hint: See Exercise 1.4.

Exercise 3.4 Fibonacci numbers.

�ere are a lot of neat properties of the Fibonacci numbers that can be proved by induction. Recall that
the Fibonacci numbers are de�ned by f0 = 0, f1 = 1 and the recursion relation fn+1 = fn + fn�1 for
all n � 1. For example, f2 = 1, f5 = 5, f10 = 55, f15 = 610.

(a) Prove that fn � 1
3 · 1.5n for n � 1.

1For this running time bound, we let n range over natural numbers that are at least 2 so that n log(n) > 0.

3

(b) Write an O(n) algorithm that computes the nth Fibonacci number fn for n 2 N.

Remark: As shown in part (a), fn grows exponentially (e.g., at least as fast as ⌦(1.5n)). On a physical
computer, working with these numbers o�en causes over�ow issues as they exceed variables’ value
limits. However, for this exercise, you can freely ignore any such issue and assume we can safely do
arithmetic on these numbers.

(c) Given an integer k � 2, design an algorithm that computes the largest Fibonacci number fn such
that fn  k. �e algorithm should have complexity O(log k). Prove this.

Remark: Typically we express runtime in terms of the size of the input n. In this exercise, the runtime
will be expressed in terms of the input value k.

Hint: Use the bound proved in part (a).

Exercise 3.5 Iterative squaring.

In this exercise you are going to develop an algorithm to compute powers an, with a 2 Z and n 2
N, e�ciently. For this exercise, we will treat multiplication of two integers as a single elementary
operation, i.e., for a, b 2 Z you can compute a · b using one operation.

(a) Assume that n is even, and that you already know an algorithm An/2(a) that e�ciently computes
a
n/2, i.e., An/2(a) = a

n/2. Given the algorithm An/2, design an e�cient algorithm An(a) that
computes an.

(b) Let n = 2k, for k 2 N0. Find an algorithm that computes an e�ciently. Describe your algorithm
using pseudo-code.

(c) Determine the number of elementary operations (i.e., integer multiplications) required by your
algorithm for part b) in O-notation. You may assume that bookkeeping operations don’t cost any-
thing. �is includes handling of counters, computing n/2 from n, etc.

(d) Let Power(a, n) denote your algorithm for the computation of an from part b). Prove the correctness
of your algorithm via mathematical induction for all n 2 N that are powers of two.

In other words: show that Power(a, n) = a
n for all n 2 N of the form n = 2k for some k 2 N0.

(e)* Design an algorithm that can compute an for a general n 2 N, i.e., n does not need to be a power
of two.

Hint: Generalize the idea from part (a) to the case where n is odd, i.e., there exists k 2 N such that
n = 2k + 1.

4

All of these
subtests just rely on theorem 1.1

As the first hint suggests we should use

the set definitions of D notation

Offilial solutions

My solution using definition of Alf
Acf g IN 11kt In elNJanice O Login Eflalecaglal

An no

Since As sin n f 1 we have a f sin n 2 f 3

and thus n e sin a 2 a 3h

Sine sin a 2 h f 3h we also have

I sin n t 2 n f n

Thus 13 smfh 2 n f h e sin a 2 n Anza

We find an 13 C 1 and no n

which fulfil the definition of Ala this

Ginta 2 n Acn

In recent exercise sheets we have often

tried to find lower upper bounds for sum

to determine their asymptotic complexity

The same applies for double triple sums

E.E.ie E.ne ineE.nn n

Thus EIEI.ie Ola

To show the other direction we use

the hint i.e 1.3 b

ji a fi and Egil a ton

This we have

ÉÉ
in it Inti's fm

Hence n's 378 i which implies
in jes

n's 0

Both drentions show Eni Aln

Here we want to use the properties of the

logarithm function We say log is a monotone

In leasing function th s for xcy we have

lost c logly
Side note This isn't true in general It is

only true for log where a n but it

doesn't matter sine logan c o for nan

and in computer science we restrict ourselves

to functions f IN Rt when using O notation

Sorry for this side note

Sanne dog is monotone intreasing and

n't n't n f n't n th 3h we have

log n't n'th s log 3h log 3 4 login

Now 3 En't n't n and n f n't n't n

thus

slogan frozen s floglastn'tn
and hence

log n't n ta f log 3 th login f flyfustan

which implies login'titn E Ollogth't n'ta

we used Is what
Notice log 3 s log n't n't n and we showed

blogla E I login't n n Now

hlogla t logo e flog n n'tu t loglastn'tn

Is log n'tu't n

but how do I get there myself

focus on what it is you have to

prove we want to prove fedly
for flu login't n n and glut lg n n'tnt

Thus we try to find a constant c

sum that flute gin

Effie Ein nd Ere Olam

for the other direition we use a

I
careful now for 7.3 we said KEIN so

we can't just say Eff z f n't
We have to prove it using the same idea

of 1.3lb

Notre that

E A Egeria EE

where we used that the sum from i f to n

ha n felt 12 n Itn a I terms and

every term A Z E for i f in

Thus

na e EET e nine zEÉÉF
which shows nine 01 Ent

Note that you are required to state both

the exact number of calls to f and

a maximally simplified bound in A notation

For these type of exercises there is a

great little guide on my website kindly

provided to me by Maximilian Schlegel

and two other co authors Find it under

the heading Week 3 link Week 4

The exact number of calls is

É it EI 2 ntn Intr hat Aln

1.2

Notre how j is set to one every

iteration of our outermost while loop

and takes on values from A to 53

H is only called one that

É I n'Y Aln calls to f

As with a lot of naive algorithms we just try
out all possibly substrings and count the A's

What are all possible substrings

Pains string

substrings starting from bo bo bobs b bs

s bstrings starting from bn bn bra bn bs

this showcases how we proles move through the

string Lastly when we have some substring

bi b we just loop through it counting n's

Offical solutions

As you can see the lorreathes and runtime

argument is very short Personally I like to

write a little bit more just to be sure

for example what is the number of substrings

why do we check all of them in the node

Here it is cranial to carefully read the description

as it tells you exactly what your algorithm

should do

For the algorithm we use one important fact
If S Dano and we look at the prefix
O they the next prefix on is precisely

the first one but with b appended Thus

we can ref information instead of looping
through it everytime

Solution

mtn

I'm sure this might confuse some students

My recommendation work through an example

step by step

Two comments first the bounds of the

sum min him p Max Ak n m s can

be determined by looking at the size of Taiz
We always want to be in their respective

range T is of size mt2 thus the index

range is of is ntl which explains the

upper bound for the sum

Tz is of site n m thus the

index range is d e ie n m 1

If the differenia k n n n 2 n then

Ila p if p D would fail since Kan n n

This explains the lower bound of the sun

Again Simulate this algorithm using pen and

paper You want to knee what is going on

This strategy of making smaller subtash

from a bigger one and putting the

results back together is often called

divide and conquer e.g Merge sort

I highly advise you to familiarize you
with this topic It takes time to do so

I have nothing to add here please

refer to the offilial Solutions

I have nothing to add to a and bl

This is what we call telescoping

Tal ETH n A e Tiffin ta ta

Taken state

I have nothing to add to call and let

