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The solutions for this sheet are submitted at the beginning of the exercise class on 16 October 2023.
Exercises that are marked by * are challenge exercises. They do not count towards bonus points.

You can use results from previous parts without solving those parts.

Asymptotic Notation

The following two definitions are closely related to the O-notation and are also useful in the running
time analysis of algorithms. Let IV be again a set of possible inputs.

Definition 1 (Q-Notation). For f : N — R,
Qf)={9: N =R" | f<O(g)}
We write g > Q(f) instead of g € Q(f).
Definition 2 (©-Notation). For f : N — R™,
O(f) ={g: N = R" | g <O(f)and f < O(g)}-

We write g = O(f) instead of g € O(f).

In other words, for two functions f, g : N — R* we have

9= Q(f) = f<0(9)

and

g=0(f) = g<O(f)and f < O(g).

We can restate Theorem 1 from exercise sheet 2 as follows.

Theorem 1 (Theorem 1.1 from the script). Let N be an infinite subset of N and f : N — R and
g: N —RT,

« If lim % =0, then f < O(g), but f # O(g).
. Ifnli_{rolo% = C € RY, then f = O(g).
 If lim L — oo, then f > Q(g), but f # ©(g).

Exercise 3.1  Asymptotic growth (2 points).

For all the following functions the variable n ranges over N.



(a)

(b)

Prove or disprove the following statements. Justify your answer.

(1) in® > Q(10n?)

(2) n%+ 3n = O(n%log(n))

3) 5nt +3n? +n+8=0(nt)
4) 3" > Q(2")

Prove the following statements.

Hint: For these examples, computing the limits as in Theorem 1 is hard or the limits do not even exist.
Try to prove the statements directly with inequalities as in the definition of the O-notation.

(1) (sin(n) 4+ 2)n = O(n)
Hint: For any x € R we have —1 <sin(z) < 1.
@ S Y i =0m)
Hint: In order to shown® < O(Y_ 1, 22'21 J), you can use exercise 1.3.

(3) log(n* + n3 +n?) < O(log(n® + n? + n))

4y YL, Vi=0(nyn)

Hint: Recall again exercise 1.3 and try to do an analogous computation here.

Exercise 3.2  Substring counting.

Given a n-bit bitstring S (an array over {0, 1} of size n € N), and an integer k& > 0, we would like to
count the number of nonempty substrings of S with exactly & ones. For example, when S = “0110”
and k = 2, there are 4 such substrings: “011”7, “11”, “110”, and “0110”.

(a)

(b)

Design a “naive” algorithm that solves this problem with a runtime of O(n?). Justify its runtime
and correctness.

We say that a bitstring S’ is a (non-empty) prefix of a bitstring S if S” is of the form S]0..i] where
0 <i < length(S). For example, the prefixes of S = “0110” are “0”, “01”, “011” and “0110”.

Given a n-bit bitstring S, we would like to compute a table 7" indexed by 0..n such that for all 7,
T[i] contains the number of prefixes of S with exactly i ones.

For example, for S = “0110”, the desired table is 7" = [1, 1, 2, 0, 0], since, of the 4 prefixes of .S, 1
prefix contains zero “1”, 1 prefix contains one “1”, 2 prefixes contain two “1”, and 0 prefix contains
three “1” or four “1”.

Describe an algorithm PREFIXTABLE that computes 7" from S in time O(n), assuming S has size n.

Remark: This algorithm can also be applied on a reversed bitstring to compute the same table for
all suffixes of S. In the following, you can assume an algorithm sUFFIXTABLE that does exactly this.

Let S be a n-bit bitstring. Consider an integer m € {0,...,n — 1}, and divide the bitstring S into
two substrings S[0..m] and S[m + 1..n — 1]. Using PREFIXTABLE and SUFFIXTABLE, describe an
algorithm SPANNING(m, k, S) that returns the number of substrings S[i..j] of S that have exactly
k ones and such that ¢ < m < j. What is its complexity?



For example, if § = “0110”7, k = 2, and m = 0, there exist exactly two such strings: “011” and
“0110”. Hence, SPANNING(m, k, S) = 2.

Hint: Each substring S[i..j| withi < m < j can be obtained by concatenating a string S[i..m| that
is a suffix of S[0..m] and a string S[m + 1..j] that is a prefix of S[m + 1..n — 1].

(d)* Using SPANNING, design an algorithm with a runtime! of at most O(n log n) that counts the number
of nonempty substrings of a n-bit bitstring S with exactly k£ ones. (You can assume that n is a power
of two.)

Hint: Use the recursive idea from the lecture.

Exercise 3.3  Counting function calls in loops (1 point).

For each of the following code snippets, compute the number of calls to f as a function of n € N.
Provide both the exact number of calls and a maximally simplified asymptotic bound in © notation.

Algorithm 1
(@ i+0

while : < n do
f0
f0
1141

j+<0

while j < 2n do

o
jj+1

Algorithm 2
(b) i+1
while i < n do
j+1
while j < i do
f0
j+—J+1
1141

Hint: See Exercise 1.4.

Exercise 3.4  Fibonacci numbers.

There are a lot of neat properties of the Fibonacci numbers that can be proved by induction. Recall that
the Fibonacci numbers are defined by fo = 0, fi = 1 and the recursion relation f,,+1 = f, + fr—1 for
alln > 1. For example, f2 = 1, f5 = 5, f10 = 55, f15 = 610.

(a) Prove that f,, > % -1.5" forn > 1.

'For this running time bound, we let n range over natural numbers that are at least 2 so that n log(n) > 0.



(b) Write an O(n) algorithm that computes the nth Fibonacci number f,, for n € N.

Remark: As shown in part (a), f, grows exponentially (e.g., at least as fast as 2(1.5™)). On a physical
computer, working with these numbers often causes overflow issues as they exceed variables’ value
limits. However, for this exercise, you can freely ignore any such issue and assume we can safely do
arithmetic on these numbers.

(c) Given an integer k > 2, design an algorithm that computes the largest Fibonacci number f,, such
that f,, < k. The algorithm should have complexity O(log k). Prove this.

Remark: Typically we express runtime in terms of the size of the input n. In this exercise, the runtime
will be expressed in terms of the input value k.

Hint: Use the bound proved in part (a).

Exercise 3.5  Iterative squaring.

In this exercise you are going to develop an algorithm to compute powers a”, with a € Z and n €
N, efficiently. For this exercise, we will treat multiplication of two integers as a single elementary
operation, i.e., for a, b € Z you can compute a - b using one operation.

(a) Assume that n is even, and that you already know an algorithm A,, »(a) that efficiently computes
a?, ie., An/Q(a) = q"/?

computes a”.

. Given the algorithm A, /5, design an efficient algorithm Ay (a) that

(b) Let n = 2%, for k € Ny. Find an algorithm that computes a™ efficiently. Describe your algorithm
using pseudo-code.

(c) Determine the number of elementary operations (i.e., integer multiplications) required by your
algorithm for part b) in O-notation. You may assume that bookkeeping operations don’t cost any-
thing. This includes handling of counters, computing n/2 from n, etc.

(d) LetPower(a, n) denote your algorithm for the computation of a” from part b). Prove the correctness
of your algorithm via mathematical induction for all n € N that are powers of two.

In other words: show that Power(a,n) = a™ for all n € N of the form n = 2* for some k € Ny.

(e)* Design an algorithm that can compute a” for a general n € N, i.e., n does not need to be a power
of two.

Hint: Generalize the idea from part (a) to the case where n is odd, i.e., there exists k € N such that
n =2k + 1.



Exercise 3.1

Asymptotic growth (2 points).

For all the following functions the variable n ranges over N.

(a) Prove or disprove the following statements. Justify your answer.

5\/5}’ V(Lto on Theoreyn 4N,

(1) £n® > Q(10n?)
(2) n? +3n = O(n?log(n))
(3) 5nt +3n2+n+8=0(n)
(4) 3" > Q(2")
A O/L Flese Sv \'OJ(O\S{%

(1) %nS > Q(10n?)
Solution:
True by Theorem 1, since
1,3

1
lim 2 = lim —n = oc.
n—00 10n2  n=o0 50

(2) n? + 3n = O(n%log(n))
Solution:

False, by Theorem 1, since

n?+3n

= li
oo 2 log(n) n3s0 log(n) o log(n)

=0+0=0.

(3) 5n* 4+ 3n% +n+8=0(nt)
Solution:

True by Theorem 1, since

5nt+3n2+n+8 . 3 1
m ——————— =lim 5+ 5 +—
n—o00 n

n—00 nd n3

(4) 3" > Q(2")
Solution:

True by Theorem 1, since

L3 . 3\"
o = (5) -

8

+ =5

nt



(b) Prove the following statements.

Hint: For these examples, computing the limits as in Theorem 1 is hard or the limits do not even exist.
Try to prove the statements directly with inequalities as in the definition of the O-notation.

(1) (sin(n) + 2)n = O(n)

Hint: For any xz € R we have —1 < sin(x) < 1.
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Using the hint we get that 1 < sin(n) + 2 < 3 and thus n < (sin(n) 4+ 2)n < 3n. The first
inequality shows that n < O((sin(n) + 2)n) whereas the second one shows (sin(n) + 2)n <
O(n). Together we get (sin(n) + 2)n = O(n).
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(2) Z?:l 2;21.7 = @(TLB)

Hint: In order to shown® < O3, Z;-:l J), you can use exercise 1.3.
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(3) log(n* 4+ n3 +n?) < O(log(n® + n? +n))
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Hint: Recall again exercise 1.3 and try to do an analogous computation here.
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Exercise 3.3  Counting function calls in loops (1 point).

For each of the following code snippets, compute the number of calls to f as a function of n € N.
Provide both the exact number of calls and a maximally simplified asymptotic bound in © notation.

Algorithm 1
@ i+0

while i < n do
70
f0
i1+ 1

j«<0

while j < 2n do
f0
je—i+1
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Algorithm 2
(b) i+1
while i < n do

j1

while j < % do
10
jei+1

14— i+ 1

Hint: See Exercise 1,4, -7
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Exercise 3.2  Substring counting.

Given a n-bit bitstring S (an array over {0, 1} of size n € N), and an integer k£ > 0, we would like to
count the number of nonempty substrings of .S with exactly k ones. For example, when S = “0110”
and k = 2, there are 4 such substrings: “011”, “11”, “110”, and “0110”.

(a) Design a “naive” algorithm that solves this problem with a runtime of O(n?). Justify its runtime
and correctness.
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Algorithm 1 Naive substring counting

c+0 > Initialize counter of substrings with & ones
fori«0,....,n—1do > Enumerate all nonempty substrings S[i..J]
forj < i,...,n—1do
x40 > Initialize counter of ones
for (<« i,...,jdo > Count ones in substring
if S[¢] =1 then
r—a+1
if x = k then > If there are k ones in substring, increment ¢
c+c+1
return c > Return number of substrings with k ones

We perform at most 7 iterations of each loop, leading to a total runtime is O (n?). The correctness
directly follows from the description of the algorithm (see comments above).
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(b) We say that a bitstring S’ is a (non-empty) prefix of a bitstring S if S’ is of the form S[0..i] where
0 < i < length(.S). For example, the prefixes of S = “0110” are “0”, “01”, “011” and “0110”.

Given a n-bit bitstring .S, we would like to compute a table 7" indexed by 0..n such that for all 3,
T'[i] contains the number of prefixes of S with exactly i ones.

For example, for S = “0110”, the desired table is T = [1, 1,2,0, 0], since, of the 4 prefixes of S, 1
prefix contains zero “1”, 1 prefix contains one “1”, 2 prefixes contain two “1”, and 0 prefix contains
three “1” or four “1”.

Describe an algorithm PREFIXTABLE that computes 7" from S in time O(n), assuming S has size n.

Remark: This algorithm can also be applied on a reversed bitstring to compute the same table for
all suffixes of S. In the following, you can assume an algorithm SUFFIXTABLE that does exactly this.
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Algorithm 2
function PREFIXTABLE(S)

T «+ int[n + 1] > Initialize array

s+ 0

fori<«0,...,n—1do > Enumerate all prefixes S[0..7]
s s+ S[i] > s saves the number of “1” in S10..7]
T[s] + T[s] +1 > S[0..7] is a prefix with s “1”

return T’

The for loop has n iterations, so the total runtime is O(n). The correctness directly follows from
the description of the algorithm (see comments above).
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(c) Let S be a n-bit bitstring. Consider an integer m € {0, ..., n//f }, and divide the bitstring S into
two substrings S[0..m] and S[m + 1..n — 1]. Using PREFIXTABLE and SUFFIXTABLE, describe an
algorithm SPANNING(m, k, S) that returns the number of substrings S[i..j] of S that have exactly
k ones and such that i < m < j. What is its complexity?

For example, if S = “0110”, k = 2, and m = 0, there exist exactly two such strings: “011” and
“0110”. Hence, SPANNING(m, k, S) = 2.

Hint: Each substring S[i..j] withi < m < j can be obtained by concatenating a string S[i..m] that
is a suffix of S[0..m| and a string S[m + 1..j] that is a prefix of S[m + 1..n — 1].

Solukon -

Each substring S[i..j] with i < m < j is obtained by concatenating a string S[i..m] that is a suffix
of S[0..m] and a string S[m + 1..j] that is a prefix of S[m + 1..n — 1], such that the numbers of “1”
in S[i..m] and S[m + 1..j] sum up to k. Moreover, from each S[i..m] that contains p < k ones, we
can build as many different sequences S[i..j] with k ones as there are substrings S[m + 1..j] with
k — p ones. We obtain the following algorithm:

Algorithm 3

function sPANNING(M, k, S)
T} < SUFFIXTABLE(S]0..m])
T < PREFIXTABLE(S[m + 1..n — 1])

min(k,
return Zp:ém'r('g kh:(:fm_l)) (T1[p] - Ta[k — p))

’ [

The complexity of this algorithm is O(n).
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(d)* Using SPANNING, design an algorithm with a runtime’ of at most O(n log n) that counts the number

of nonempty substrings of a n-bit bitstring S with exactly k ones. (You can assume that n is a power
of two.)

Hint: Use the recursive idea from the lecture.

Algorithm 4 Clever substring counting

function couNTSsUBSTR(S, k,i = 0,j =n — 1)
if i = j then
if £k =1and S[i] = 1 then
return 1
else if £ = 0 and S[i] = 0 then
return 1
else
return (
else
m < [(i+j)/2]
return COUNTSUBSTR(S, k, i, m) + COUNTSUBSTR(S, k, m + 1, j) + sPANNING(m, k, S)
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Exercise 3.4 Fibonacci numbers.
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Exercise 3.5  Iterative squaring.

In this exercise you are going to develop an algorithm to compute powers a”, witha € Z and n €
N, efficiently. For this exercise, we will treat multiplication of two integers as a single elementary
operation, i.e., for a,b € Z you can compute a - b using one operation.
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(c) Determine the number of elementary operations (i.e., integer multiplications) required by your
algorithm for part b) in O-notation. You may assume that bookkeeping operations don’t cost any-
thing. This includes handling of counters, computing n/2 from n, etc.

Solution:

Let T'(n) be the number of elementary operations that the algorithm from part b) performs on input
a,n. Then

T(n) <T(n/2) +1<T(n/4)+2<T(n/8)+3<...<T(1) +logyn < O(logn) .2
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