
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 2 October 2023
Johannes Lengler, David Steurer
Lucas Slot, Manuel Wiedmer, Hongjie Chen, Ding Jingqiu

Algorithms & Data Structures Exercise sheet 2 HS 23

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 9 October 2023.

Exercises that are marked by ⇤ are challenge exercises. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Exercise 2.1 Induction.

(a) Prove via mathematical induction that for all integers n � 5,

2n > n
2
.

(b) Let x be a real number. Prove via mathematical induction that for every positive integer n, we have

(1 + x)n =
nX

i=0

✓
n

i

◆
x
i
,

where ✓
n

i

◆
=

n!

i!(n� i)!
.

We use a standard convention 0! = 1, so
�n
0

�
=

�n
n

�
= 1 for every positive integer n.

Hint: You can use the following fact without justi�cation: for every 1  i  n,
✓
n

i

◆
+

✓
n

i� 1

◆
=

✓
n+ 1

i

◆
.

Asymptotic Notation
When we estimate the number of elementary operations executed by algorithms, it is o�en useful
to ignore constant factors and instead use the following kind of asymptotic notation, also called O-
Notation. We denote byR+ the set of all (strictly) positive real numbers and byN the set of all (strictly)
positive integers. Let N be a set of possible inputs.

De�nition 1 (O-Notation). For f : N ! R+,

O(f) := {g : N ! R+ | 9C > 0 8n 2 N g(n)  C · f(n)}.

We write f  O(g) to denote f 2 O(g). Some textbooks use here the notation f = O(g). We believe
the notation f  O(g) helps to avoid some common pitfalls in the context of asymptotic notation.

Instead of working with this de�nition directly, it is o�en easier to use limits in the way provided by
the following theorem.

�eorem 1 (�eorem 1.1 from the script). Let N be an in�nite subset of N and f : N ! R+ and
g : N ! R+.

• If lim
n!1

f(n)
g(n) = 0, then f  O(g) and g 6 O(f).

• If lim
n!1

f(n)
g(n) = C 2 R+, then f  O(g) and g  O(f).

• If lim
n!1

f(n)
g(n) = 1, then f 6 O(g) and g  O(f).

�e following theorem can also be helpful when working with O-notation.

�eorem 2. Let f, g, h : N ! R+. If f  O(h) and g  O(h), then

1. For every constant c > 0, c · f  O(h).

2. f + g  O(h).

Notice that for all real numbers a, b > 1, loga n = loga b · logb n (where loga b is a positive constant).
Hence loga n  O(logb n). So you don’t have to write bases of logarithms in asymptotic notation, that
is, you can just write O(log n).

Exercise 2.2 O-notation quiz.

(a) For all the following functions the variable n ranges over N. Prove or disprove the following state-
ments. Justify your answer.

(1) 2n5 + 10n2  O(1
100n

6)

(2) n
10 + 2n2 + 7  O(100n9)

(3) e
1.2n  O(en)

(4)* n
2n+3
n+1  O(n2)

(b) Find f and g as in �eorem 1 such that f  O(g), but the limit limn!1
f(n)
g(n) does not exist. �is

proves that the �rst point of �eorem 1 provides a su�cient, but not a necessary condition for
f  O(g).

Exercise 2.3 Asymptotic growth of
Pn

i=1
1
i (1 point).

�e goal of this exercise is to show that the sum
Pn

i=1
1
i behaves, up to constant factors, as log(n)when

n is large. Formally, we will show
Pn

i=1
1
i  O(log n) and log n  O(

Pn
i=1

1
i) as functions from N�2

to R+.
For parts (a) to (c) we assume that n = 2k is a power of 2. We will generalise the result to arbitrary n

in part (d). For j 2 N, de�ne

Sj =
2jX

i=2j�1+1

1

i
.

(a) For any j 2 N, prove that Sj  1.

Hint: Find a common upper bound for all terms in the sum and count the number of terms.

2

(b) For any j 2 N, prove that Sj � 1
2 .

(c) For any k 2 N0 = N [{0}, prove the following two inequalities

2kX

i=1

1

i
 k + 1

and
2kX

i=1

1

i
� k + 1

2
.

Hint: You can use that
P2k

i=1
1
i = 1+

Pk
j=1 Sj . Use this, together with parts (a) and (b), to prove the

required inequalities.

(d)* For arbitrary n 2 N, prove that
nX

i=1

1

i
 log2(n) + 2

and
nX

i=1

1

i
� log2 n

2
.

Hint: Use the result from part (c) for k1 = dlog2 ne and k2 = blog2 nc. Here, for any x 2 R, dxe
is the smallest integer that is at least x and bxc is the largest integer that is at most x. For example,
d1.5e = 2, b1.5c = 1 and d3e = b3c = 3. In particular, for any x 2 R, x  dxe < x + 1 and
x � bxc > x� 1.

Exercise 2.4 Asymptotic growth of ln(n!).

Recall that the factorial of a positive integer n is de�ned as n! = 1 ⇥ 2 ⇥ · · · ⇥ (n � 1) ⇥ n. For the
following functions n ranges over N�2.

(a) Show that ln(n!)  O(n lnn).

Hint: You can use the fact that n!  n
n for n � 1 without proof.

(b) Show that n lnn  O(ln(n!)).

Hint: You can use the fact that
�
n
2

�n
2  n! for n � 1 without proof.

Exercise 2.5 Testing equations (2 points).

Your friend sends you a piece of code that computes his favorite function f : N ! N. For n 2 N,
we want to test if the equation f(a) + f(b) + f(c) = f(d) can be satis�ed using positive integers
1  a, b, c, d  n. Your friend completed Algorithms and Data Structures last year, and so you may
assume that his code computes f(k) in O(1) for any k 2 N. You may also assume simple arithmetic
operations on integers can be performed in O(1). Finally, you may initialize an array of size k in
time O(k).

(a) Design a simple O(n4) algorithm that outputs “YES” if there exist integers 1  a, b, c, d  n such
that f(a) + f(b) + f(c) = f(d) and “NO” otherwise.

3

(b) Assume that f(k)  k
3 for all k 2 N. Modify your previous algorithm so that it works in time

O(n3) under this assumption. Motivate brie�y why it still works.

Hint: You could use a helper array of size n3 to get rid of one of the loops in your previous algorithm.
�e helper array could save which values the function f can take.

(c)* Assume that f(k)  k
2 for all k 2 N. Modify your previous algorithm so that it works in time

O(n2) under this assumption. Motivate brie�y why it still works.

Hint: You could use a helper array again. Note that f(a) + f(b) + f(c) = f(d) implies that
f(a) + f(b) = f(d)� f(c).

4

Let jelN To prove Sj
g

f 1

Similar to last week's exercise The hint tells you
that as well Now i gets bigger and bigger
thus I gets smaller Thus the biggest I will
be is right at the start R'Émember

we look

for a big term here because we are interested

in an uppet bound

s
i i g

s
i i i

How many terms are in the sum

sine 2 it a n a a s rite a air
we have 2 terms in the sum thus

i

if É 2

Now notice that it s In thus

25 fi e 2 En en

Hence for arbitrary j we have

Sj E 1

Same idea as before Now we are interested in

a small term since we want a lower bound

s E f 22 fi E
i i y

can you see why
T
t t t t it i

Sn Eff f S I It s Is ftftf

S ends at i 2 S starts at 1 3 and ends at 5 4

S starts at its and ends at 5 8

This I si It s starts at it on me

missing 5 1 3 7 1 7

We use the hint I and bl

É at Es at k e atht
ien je

a E it siesta 21 4 E
in 2

Now that n doesn't have to be a power of 2

i e 2 for some KEIN anymore we need to

be careful Notice that for arbitrary n it

holds that log n e flogen thus

n 21037 I 2 2 7 An analogous argument

can be made for logan by changing

the f sign to a 2 sign

Since he 2 for kn logan we get

I É I hats fees 7in elegant

Similarly n 2 2 for 4 login we get

false for lobeexpert

Tip A Sometimes descriptions are very

wordy i.e a lot of words beating around

the bush it's a great skill to have

to boil it down to the most important

bits of the text Here

We have access to a funition f
If Rib c d f n

calculating flu is in Dla for som KEIN

elementary operations like addition in 011

we can initialize an array of size k in

Olk

Generally in design an algorithm tastes we

are interested in the following

Algorithm itself as Pseudocode or description

Proof of correntness lie showing why it is correct

Runtime analysis asymptotic complexity of
the algorithm using A NotationI

Runtime often give a lot of information
about an algorithm
Notice that flat fib flat fol

12 b c d how many possible
tuples

n n i n n n tuples

for a n n

f
testing all

f b n h
possibilities

for c h n

for d n n

Using four nested for loops we can check

all n tuples a b c d by iterating over

all integers in Clin in each for loop
for each iteration we check if
Fca Fb fla fld

n Ola If yes return Yes

If after all iterations there was no success

return No

correctness follows trivially from the fait
that we iterate over all possibilities

Runtime All n iterations use 2 add

operations 7 comparison iteration and

h time evaluating flu for some KEIN

All of these 7 operations are in Oln

hence the algorithm finishes in Dla

Worst case Best case Inch sort example

Nor we have been given additional information

of f namely FCK s k for all Ken

How does that help us

Think of how we use f in our algorithm

fca t f bl t flc fell
a f b s c ed

what values can a b lid take on

remember A f a b c d f n

We see the largest valve f can be

in our algorithm is n and since

F IN IN the smallest possible value is 1

What have we learned from this

Since we test if flat f b fl fed
and all values F E ftp in for elabicid
this test can only be true if
f a f b Fla E 1 n3

This is where the hint comes into play
we initialize a helper array of size n

Hfa n 0 10

Now using a for loop from 5 7 to n

we caliulate fci and set H flip n

using those nested for loop we check

all tuples albie Let a f a tflbltfic

If Hca 1 it mean there exists a

de 1 n such that

f a fib tfc f d

it Taint
tuple labia return Yes otherwise

if all tples fail return No

Correctness Since any sum f a fb tfl

in the case of success must be equal

to fool for some de Ce nl and

we test all tuples albie as

well as determine all possible

values f d the algorithm must

find a b c d that fulfil the

desired equation if present
Since 1Ef d en for dell n

and we thech if a flat lb flc
us out of bounds errors are

impossible

For runtime

Array initialization Dea

iterating over n tuples din

Ola

When looking at the hint we see

it's similar to b

The idea is now to rule out more

possible tuples so our algorithm

gets even faster
How can we do that

The hint suggest f a fib foll ft
When looking at the modified equation

one notices the following

Calculating fla tf b and fld fl
each in Dla can be done in

Dcn's total Now remembering how we

used the helper array in b we

derive the following solution

Let H Ca an bi an array

of size In Using two nested

for loops we can calculate the

f a f b in Oln for all

lab where tea ben and set

for 2 7 n

H fla f b 1 you b n n n

Hffaltf b 7 7

Using another two nested for loops
we calculate fld fi for all

Colic where asdic en and if

HC fld fl is equal to 1 we

return Yes If these two loop

end and we haven't returned return

No

Correctness Sine fla tf b fcc fld

implies that Fla f b fall fa
and we go over all possible

tuples for both sides of the

equation If lab i d exist

that fulfil flat f b tfa fed
the algorithm correctly return Yes

otherwise correctly returns No

Since fol Fla E 2n and

f a tf b Rn

out of bounds eurers can't occur

Routine

array initialization Ola't

first serond double loop Aln

belause elementary operations such

as addition or subtraction as

well as fat for some Kein

is in OA

Thus the total runtime is Aln

2kt 22h y't 2 42 k t k

Now Janie K2 S 422 5 K

2 U't Sh

42 74 34

Now Janie K2 S 34215

2 a t 2kt is

a t 26th

Ktn

this might seem tricky but normally

you try out a lot of things before

writing such a clean solution

this is a
variant of the
binomial theorem

IA n n

intr 3 x 1 I Egli x

Itt Assume this property holds for some

positive integer k that is

xx E 4 x

Is ka Ktn

Atx Atx Atx

t xx

So far so good Now what

Let's manipulate the expression further

E I it 4 it

My guess is that some students might

have difficulties from here on out

First observe that 4 it Effin x

How Notice that i goes from 0 to k

in the left sum meaning we go from

5 x up to 1 x we have to preserve

this otherwise the sum won't stay the

same Now in the right sum I

goes from A to her therefore we

need to s btrant n from all elevenses

of i

E I it E 4 it

x El x

i n

How am I supposed to notile this

Well ideally we want to use the hint

it.li Mi
so playing

around with the sum and

looking for patterns is the way

to go here

Now it would be nice to combine

the sums but the indices don't watch

i e one starts at 0 and goes to 4

the other from 1 to htt

I ii Eility
I It x t 1 x 1 t

1 it it 11h

1 it 7 I

Now we use b I n thus

111 1 1 111 411

I it 1 1 1

I
This might seem difficult and it

takes some time to get ionfortable

with sum notation With practice

you
will get there

There exist other E tricks move

in later lasses

refer to official solutions

I find the description to be confusing so

here is another way to put this

find f and g such that feels
but the limit nets Itf doesn't

exist

If you don't know what a limit

is or what it means you

a limit to not exist refer

to my guide or look online

