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Algorithms & Data Structures Exercise sheet 1 HS 23

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 2 October 2023.

Exercises that are marked by ⇤ are challenge exercises. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Exercise 1.1 Guess the formula (1 point).

Consider the recursive formula de�ned by a1 = 2 and an+1 = 3an � 2 for n > 1. Find a simple closed
formula for an and prove that an follows it using mathematical induction.

Hint: Write out the �rst few terms. How fast does the sequence grow?

Exercise 1.2 Sum of Cubes (1 point).

Prove by mathematical induction that for every positive integer n,

13 + 23 + · · ·+ n3 =
n2(n+ 1)2

4
.

Exercise 1.3 Sums of powers of integers.

In this exercise, we �x an integer k 2 N0.

(a) Show that, for all n 2 N0, we have
Pn

i=1 i
k  nk+1.

(b) Show that for all n 2 N0, we have
Pn

i=1 i
k � 1

2k+1 · nk+1.

Hint: Consider the second half of the sum, i.e.,
Pn

i=dn
2 e

ik. How many terms are there in this sum?
How small can they be?

Together, these two inequalities show that C1 · nk+1 
Pn

i=1 i
k  C2 · nk+1, where C1 = 1

2k+1 and
C2 = 1 are two constants independent of n. Hence, when n is large,

Pn
i=1 i

k behaves “almost like
nk+1” up to a constant factor.

Exercise 1.4 Asymptotic growth (1 point).
























































































































Recall the concept of asymptotic growth that we introduced in Exercise sheet 0: If f, g : N ! R+ are
two functions, then:

• We say that f grows asymptotically slower than g if lim
m!1

f(m)
g(m) = 0. If this is the case, we also

say that g grows asymptotically faster than f .

Prove or disprove each of the following statements.

(a) f(m) = 10m3 �m2 grows asymptotically slower than g(m) = 100m3.

(b) f(m) = 100 ·m2 log(m) + 10 ·m3 grows asymptotically slower than g(m) = 5 ·m3 log(m).

Hint: log(m) grows asymptotically slower thanm.

(c) f(m) = log (m) grows asymptotically slower than g(m) = log (m4).

(d) f(m) = 2(0.9m
2+m) grows asymptotically slower than g(m) = 2(m

2).

(e) If f grows asymptotically slower than g, and g grows asymptotically slower than h, then f grows
asymptotically slower than h.

Hint: For any a, b : N ! R+, if lim
m!1

a(m) = A and lim
m!1

b(m) = B, then lim
m!1

a(m)b(m) = AB.

(f) If f grows asymptotically slower than g, and h : N ! N grows asymptotically faster than 1, then
f grows asymptotically slower than g(h(m)).

Exercise 1.5 Proving Inequalities.

(a) By induction, prove the inequality

1

2
· 3
4
· 5
6
· . . . · 2n� 1

2n
 1p

3n+ 1
, n � 1.

(b)* Replace 3n + 1 by 3n on the right side, and try to prove the new inequality by induction. �is
inequality is even weaker, hence it must be true. However, the induction proof fails. Try to explain
to yourself how is this possible?
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Chinch cattily
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I'm sure this might be confusing to some

and what you need to pref through
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h IN IN fig In D

i
What we would need top rove formally
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it is true that
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https://math.stackexchange.com/questions/2543452/what-are-the-strong-and-weak-in-mathematics
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