Exercise 124  TST and MST (1 point).

Let G = (V, E) be a connected, weighted graph, with weights w : E — R>. A travelling salesperson
tour (TST) in G is a closed walk which visits each vertex v € V at least once. We write tst(G) for the
length of a shortest TST in G, that is:

l—

tst(G) = min  w(P), here w(P vl,vz

(G) =, _pin w(P),  wherew(P):= Z ({vi, viga}).
isaTSTin G

(a) Let M C E be the edges of a minimum spanning tree of G, with weight w(M) := >~ ., w(e).

Prove that w(M) < tst(G).

Let PbeaTSTin G, and let E(P) be the set of edges traversed by P. Then E(P) spans V. Therefore,
the graph G’ = (V, E(P)) is connected, and thus it has a spanning tree 7', whose weight is at most
w(P). But T is also a spanning tree for G, and so w(M) < w(T) < w(P).
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b,

end 0 wWw(M) € J(T) < w(P

(b) Let H = (V, Maouble) be the multigraph with vertex set V, and edge set Myouble containing two

copies of each edge e € M. Prove that H has a Eulerian tour of length 2 - w(M).

Hint: See Exercise 10.1. What can you say about the degree of a vertex in H?

Solution:

As we have doubled all edges in M to obtain Myoupe, €ach vertex v € V has even degree (in H).
But this implies that H has a Eulerian tour. (To see this, we can use the construction of Exercise 10.1,
which shows H has a Eulerian tour if and only if the (simple) graph H' obtained by subdivision of

the edges of H has a Eulerian tour. The vertices of that graph all have even degree, and for simple
graphs we know that this is equivalent to having a Eulerian tour). The length of a Eulerian tour in
Hisjust )5 cpp  w(e) =23 pyw(e) =2-w(M).

(c) Describe an algorithm which outputs a TST in G of length at most 2 - mst(G), where mst(G) is

the length of a minimum spanning tree of G. The runtime of your algorithm should be at most
O(|E|log | E|). Prove that your algorithm is correct and achieves the desired runtime.

Hint: For a connected graph with n vertices and m edges, you may use the fact that there exists an
algorithm to find a minimum spanning tree in time O(mlogm), and a Eulerian tour (if one exists) in

time O(m).
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