Hoft T4(0)  lipts A connected graph is called a tree.
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Tree [edit]

A tree is an undirected graph G that satisfies any of the following equivalent conditions:

« G is connected and acyclic (contains no cycles).

o G is acyclic, and a simple cycle is formed if any edge is added to G.

« G is connected, but would become disconnected if any single edge is removed from G.
« G is connected and the 3-vertex complete graph K3 is not a minor of G.

« Any two vertices in G can be connected by a unique simple path.

If G has finitely many vertices, say n of them, then the above statements are also equivalent to any of the following conditions:
o G is connected and has n — 1 edges.
« G is connected, and every subgraph of G includes at least one vertex with zero or one incident edges. (That is, G is connected and 1-

degenerate.)
o G has no simple cycles and has n — 1 edges.
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If a tree contains at least two vertices, then any longest path in this tree

H5/M K UO) “MS has leaves as endpoints.
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HSA4 T4(o) Upts  Any directed acyclic graph has a vertex with in-degree 0.
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F<lo T4 (& b fl'g A tree with n vertices must have n — 1 edges.
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Tree [edit]
A treeis an undirected graph G that satisfies any of the following equivalent conditions:
« G is connected and acyclic (contains no cycles).
« G is acyclic, and a simple cycle is formed if any edge is added to G.
« G is connected, but would become disconnected if any single edge is removed from G.

« G is connected and the 3-vertex complete graph K3 is not a minor of G.
» Any two vertices in G can be connected by a unique simple path.

If G has finitely many vertices, say n of them, then the above statements are also equivalent to any of the following conditions:

o G is connected and has n — 1 edges.

« G is connected, and every subgraph of G includes at least one vertex with zero or one incident edges. (That is, G is connected and 1-
degenerate.)

o G has no simple cycles and has n — 1 edges.
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F<lo T4 (& Wk An Eulerian walk visits every edge exactly once.
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_ Let B = AF be the adjacency matrix raised to the
Fslo T4 m wi—g k-th power. If B;; > 0 then there is a path of
length k£ from i to j.

— uher Oy g1~ &&dé&cucj “&*Vﬁkj

- u«[/\(ad\— 0) o— PQJKL\ |

Q a b C
/I\ & | an o /
/N
\04_16/ b [ 1 A 0 = A
Clp 21 4
A 0 A
A A D
O N
A0 M7
/1/107//\/1 — G
o 1 A A
O P




Pro/ by mbutken

AL A e fwe adjacency watoi 0/ o
o dvecked  Greph O

e prove (IWig AE)@ 5t nomber Y
wo ks 0f Lengfh | fron sartex 4 fo .

b =~ -
—_&\ < 1 ‘/ <\|)5 E,E

0 ¢ Uye

Yo s s eesy  fo See ot /\\‘) %
TL\Q/ (/\u[,v\\ﬂé’/{f 0/1 U\)g\u}\) ‘% Zef/\‘S}L\ A /VOV"\

).
B Lor some kel e [haue o)
Aw\) 0 fhe nunbaer d/ el

0/ @@V‘ﬁH\ Ix //ow\ l Ao J

< o ~a kA
- (k)
Assvime Klng-\r /‘ . N H e Ao b er Q/

v of Ze(/\$1‘(/\ b //dr’\ S
[(#.)



A = Au .AA o Jrue/e/o(/e_ e heve
() oW W
] £,
j (;4
Nov wotice et & WU‘ 4/ “g‘%j Fho ket
//Ol/’\ A {Q j O bQ Seen Zap

o wvelh gl degth b hon 1t

cgme  u eV Jollong by a4 Lall

0/ «ZWS’H\ A from W to j) 7, €.
J

- <A a7 Suce e wellk ron

ro

S o &/ 4_”@/‘5% kO kuoo
bro ke A cont dins Yoo pomben 9// ol s
o Lenglh & Jrom 1 te ([HD
e o askend an ey /mw\ Lt

Y o9 enyy  welk Jrosu to |
thos te pwbe o/ calles  Aram 3 4o
b the aumbe o/ el dom i 4
A fime ) The  pumboer 0/ val ko /mm u

to e havo Uetn) V]

) | A - Z/\@//w




T In an unweighted graph, both BFS and DFS can be
Felo K Ub bf s used to determine shortest paths.
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FS10 T1(y) b ke A binary tree of height A (the root has height 0)
has at most 2" leaves.
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J‘-I N 2@ T4 (é> 5‘)4’3 The topological ordering of a directed acyclic graph is unique.
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-H N ZO T/' (£> Sfj'l'g For all n € N, there exists a directed acyclic graph on n vertices with (g) edges.
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H N ZO T/l ((,> SP-(—S Let v € V be a vertex of an undirected graph G = (V, E) with adjacency matrix A.
It takes time ©(1 + deg(v)) to compute deg(v) from A.
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T If every vertex of an undirected graph G has even degree, then G has an
H S ZO , g (C> SP l’g Eulerian walk.
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H Q ZO T/l (C> 5 no‘lfg In order to run Dijkstra’s algorithm on a directed graph G| you first need to
have a topological ordering of G.
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H Q1 T’/' (d 4 ‘Jl'g An ur}directed graph that contains a closed walk of even length always
contains a cycle of even length as well.
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T L For allm € N and all 0 <m < 221 there exists a directed acyclic graph on
H S 2/‘ I 1 C> Q ‘J < . ) 2
n vertices with m edges.
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H Ll T/f (é> 4 Pl’g An undirected graph G = (V, E) with |E| = |V| —1 is always connected.
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Tree [edit]

A tree is an undirected graph G that satisfies any of the following equivalent conditions:

» G is connected and acyclic (contains no cycles).

o G is acyclic, and a simple cycle is formed if any edge is added to G.

« G is connected, but would become disconnected if any single edge is removed from G.
« G is connected and the 3-vertex complete graph K3 is not a minor of G.

« Any two vertices in G can be connected by a unique simple path.

If G has finitely many vertices, say n of them, then the above statements are also equivalent to any of the following conditions:
o G is connected and has n — 1 edges.
« G is connected, and every subgraph of G includes at least one vertex with zero or one incident edges. (That is, G is connected and 1-

degenerate.)
« G has no simple cycles and has n — 1 edges.
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£371L T2 (O 7 V)-\S . justify your answers briefly.

Let G = (V,E) be a connected edge-weighted undirected graph where all the weights are
nonnegative and distinct, and assume that |V| > 2. Let T' be a minimum spanning tree of G.

Let v € V be some vertex and define T}, to be the tree of shortest paths that is obtained by
applying Dijkstra’s algorithm on G starting from the source v.

Is it possible that T" and T}, do not have any edge in common? If the answer is yes, provide
an example showing that it is possible. Otherwise, prove that it is impossible.
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£371 T2 (O 7 W{S _justify your answers briefly.

We define the (undirected) complete graph K, on n vertices as K, = ({vi,...,vn}, En),
where E,, = {{v;,v;} |1 <i<j<n}

Do the following claims hold true? For each of them, either provide a counter-example or
briefly justify why they hold.

i) For all n, K,, contains a Hamiltonian path.
Complete Sf&()}\ T Huclmen ot tho
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ii) For all n, K, contains a Eulerian circuit.

Lu- U /m»« kv\ { ol Yy the d%réﬁ o/
v "]\ d@c\g[uﬁ = n-A
For £ Jen " ot haut A-d Gy odd

iii) For all n, one can always add a single vertex vy, and at most n edges adjacent to v, to
K, so that the resulting graph contains a Eulerian path.
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S0 T2 (O hpls

Definition 1 A vertex v in a connected graph is called a cut vertex if the subgraph obtained
by removing v (and all its incident edges) is disconnected.

Definition 2 An edge e in a connected graph is called a cut edge if the subgraph obtained by
removing e (but keeping all the vertices) is disconnected.

In the following, we always assume that the original graph is connected. Prove or find a
counterexample to the following statements:

i) If a vertex v is part of a cycle, then it is not a cut vertex.
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H 5'&0 ‘rz (Q> 11 V)-\g ii) If a vertex v is not a cut vertex, then v must be part of a cycle.
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S0 T2 (O hpls

iii) If an edge e is part of a cycle (that is, e connects two consecutive vertices in a cycle),
then it is not a cut edge.
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This statement is correct. Let G be a connected graph and let e = {v1,v2} be an edge
of G that is part of a cycle vy ...v; for some k > 3. Let v and w be arbitrary vertices
and consider any walk between u to w in G. Let’s replace every appearance of vjvs in
this walk by the path vivgvg_1 ... vy and every appearance of vov; by vovs...vgv1. This
yields a walk from u to w that does not use the edge e. Hence there exists a walk between
any two vertices in the subgraph of G obtained by removing e, so e is not a cut edge.



H 67_0 ‘l"z ((D [1 V).\S iv) If v is a cut vertex and e is an edge incident to v, then e is a cut edge.
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Relation to vertex connectivity |edit] somacted ge,apm

Bridges are closely related to the concept of articulation vertices, vertices that belong to every path between some pair of ORI DCHTES

other vertices. The two endpoints of a bridge are articulation vertices unless they have a degree of 1, although it may also be
possible for a non-bridge edge to have two articulation vertices as endpoints. Analogously to bridgeless graphs being 2-edge-connected, graphs
without articulation vertices are 2-vertex-connected.
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S T2 () hpls

Describe an algorithm which, given an unweighted directed graph G = (V| E) and a vertex
v € V, finds a shortest cycle containing v. If there is no such cycle, the algorithm should
report that v is not a vertex of any cycle. Faster algorithms are worth more points. To get full
points, aim for O(|V| + |E|) runtime.
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We start a breadth-first search (BFS) from v:
e If we do not encounter v for a second time, then v is not a vertex of any cycle.

e If we do encounter v for a second time, let u be the vertex from which we reached v, and
let P be the shortest path from v to u which was found by the BFS. Adding the edge
(u,v) to the path P will yield a shortest cycle containing v.



HSU T2 (0 hpls

A tournament is a directed graph G = (V, E) such that:

e G has no self loops, i.e., (v,v) € E, for all v € V. (Note that the graphs that we usually
consider have no self loops.)

e For every two distinet vertices u,v € V| either (u,v) € E or (v,u) € E but not both.

Let G be a directed acyclic graph that is also a tournament. Show that G has a unique
topological sorting.
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Let n be the number of vertices of G. Since G is a directed acyclic graph (DAG), it has at
least one topological sorting (v1,...,v,). On the other hand, since G is a tournament, for
every 1 < i < n, there is an edge between v; and v;y; in G. Furthermore, since v; appears
before v; 41 in the topological sorting (vy,...,v,) of G, the edge between v; and v;;; must
be (vi,vi+1) and cannot be (vit+1,v;). Therefore, (vi,...,v,) is a path in G, hence v; must
appear before v;4+1 in any topological sorting of G. We conclude that (v1,...,vy) is the unique
topological sorting of G.



H S0 ) PJ(S

You are given an array of n natural numbers ay,...,a, € N summing to A := Y"1 ; a;, which is a
multiple of 3. You want to determine whether it is possible to partition {1,...,n} into three disjoint
subsets I, J, K such that the corresponding elements of the array yield the same sum, i.e.

Zaizzajz Zak=§.
el jEJ kEK

Note that I, J, K form a partition of {1,...,n} if and only if INJ =INK = JNK = () and
IUJUK ={1,...,n}.

For example, the answer for the input [2,4,8,1,4,5,3] is yes, because there is the partition {3,4},
{2,6}, {1,5,7} (corresponding to the subarrays (8, 1], [4, 5], [2,4, 3], which are all summing to 9).
On the other hand, the answer for the input (3,2, 5, 2] is no.

Provide a dynamic programming algorithm that determines whether such a partition exists. Your
algorithm should have an O(nA?) runtime to get full points. Address the following aspects in your
solution:
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Size of the DP table / Number of entries: (V\ "'/1) x (A+1) x CA f/\)

Meaning of a table entry:

) if there are two disjoint sets I,J C {1,...,m}
DP[m,B,C] = such that },.;a; = B and . ;a; = C,
0 otherwise.

Computation of an entry (initialization and recursion):

1 ifB=C=0,

DP|0,B,C| =
[ ] {0 otherwise.

The other entries are then computed as
DP[m+1, B,C] = max{DP[m, B,C], DP[m, B — ap+1,C)], DP[m,B,C — am+1]}.

In this formula we assume that if a;,+1 > B, then DP[m, B — am+1,C] = 0, and if a1 > C, then
DP[m, B,C — am1] = 0.

Order of computation:
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Extracting the result:
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It is 2050 and the city of Zurich has finally built some proper cycling lanes to travel around
the city. It turns out that one of the cycling lanes starts exactly at the road crossing where
you are living, and of course there are also cycling lanes at the ETH road crossing. Since you
are commuting to ETH by e-bike every day and you care about the environment, you would
like to know which way from your place to ETH requires the least power from your e-bike.
Your commuting way should only go through cycling lanes, and not use any other streets.

There are several cycling lanes around the city and you can switch between them at crossings.
For each pair of crossings that are connected directly by a cycling lane, you know how much
battery is needed to travel from the first crossing to the second one. Note that your e-bike
battery gets charged when you go downhill, so there are some crossing pairs for which you
gain some battery by going from the first one to the second one. However, due to the laws of
physics, it is impossible that you leave a crossing, bike around cycling lanes and come back
to the same crossing with more battery than you started with. Biking from a crossing C' to
another crossing C’ does not necessarily require the same amount of power than biking from
C’ to C (for example, think of a steep slope from C to C").

i) Model the problem as a graph problem. Describe the set of vertices, the set of edges and
the weights in words. What is the corresponding graph problem ?

—  Shorte s} ‘0&”\
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Solution: The network of cycling lanes defines a directed graph. The vertices V' are the
crossings, and for each pair of crossings u,v € V the two directed edges (u,v) and (v, u)
are present if u and v are connected directly by a cycling lane. The weight w((u,v))
of an edge (u,v) is the amount of power needed to go from u to v using this direct
connection. If you gain battery by going from u to v then w((u,v)) will be negative.
Note that the assumption about the laws of physics guarantees that the graph does not
contain a negative cycle.

The graph problem corresponding to finding the most energy-economic way from your
place (denoted by vertex s) to ETH (denoted by vertex t) is the computation of a shortest
path from s to t.



ii) Which algorithm from the lecture can you use to solve the graph problem ? Justify
why you can use this algorithm, and state its running time in terms of |V| and |E| in
O-notation.

Solution: Since the graph contains edges with negative weights, but no negative cycle,
we can use the Bellman-Ford algorithm to compute the shortest path from s to ¢, which
has a running time of O(|V| - |E).

b) A friend of yours now tells you that no matter which pair of crossings you are considering,
the most energy-economic way (i.e., the one that requires the least battery) from the first one
to the second one always goes through at most k other crossings (for some natural number
k< \/m) How can you modify the previous algorithm to get a lower runtime? In order to
achieve full points, your algorithm should run in time O(k - |E|).

i) Describe your algorithm (using text or pseudocode). A high-level description is enough.
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Solution: In this case, we know that any shortest path in the graph consists of at most
k+1 edges. The algorithm therefore consists of running the “bound improvement” update
of the Bellman-Ford algorithm k+1 times (instead of the usual |V|—1 times), with source
vertex s. This is captured by the following pseudocode, where the distances from s to
other vertices are saved in the array d:



Algorithm 3 TruncatedBellmanFord(V, E,w,s,k)

d[s] «+ 0
forve V\ {s} do

d[v] < oo
for/=1,...,k+1do

for (u,v) € E do

if d[v] > d[u] + w((u,v)) then
d[v] « d[u] + w((u,v))

return d[t]

ii) Prove the correctness of your algorithm and show that it runs in time O(k - |E|).

Solution: The correctness of the algorithm basically follows from the correctness of the
Bellman-Ford algorithm and the guarantee that all shortest paths have at most k + 1
edges. Indeed for any ¢ € N, we know that after £ “bound improvement” updates of the
Bellman-Ford algorithm, the values stored in the array (d[v])yey contain the length of
the shortest paths from s to v among all paths of at most £ edges. Therefore, after k + 1
updates, these will be the length of the shortest paths from s to all other vertices in V.

Since one “bound improvement” update runs in time O(|E|), and we perform it k + 1
times, the total running time is indeed O(k - |E).



¢) On the weekend you would like to explore the city with your e-bike. You start from the road
crossing where you are living with your battery charged with an amount b of power, and you
want to know what are the crossings that you can reach. In other words, you are interested
in finding all places that can be visited without needing to charge your battery on the way.
Describe an algorithm that gives you the set of such reachable places. In order to achieve full
points, your algorithm should run in time O(|V| - |E|).

Note that this part builds on part (a), not on part (b). In other words, here we do not
assume that the most energy-economic way from any crossing to any other crossing always
goes through at most k£ other crossings.

i) Describe your algorithm (using text or pseudocode). A high-level description is enough.
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Algorithm 4 BatteryBellmanFord(V, E, w,s,b)
d[s] «+ 0
for v e V'\ {s} do
d[v] + oo
for(=1,...,|V| do
for (u,v) € E do
if d[v] > du] + w((u,v)) and d[u] < b then
d[v] « d[u] + w((u,v))
return {v e V : d[v] < b}




ii) Prove the correctness of your algorithm and show that it runs in time O(|V| - |E|).

Solution: Adding the condition d[u] < b in the update rule means that now, after the
(-th iteration of the for-loop, d[v] contains the length of the shortest path from s to v
among paths on at most ¢ edges such that any subpath from s to an intermediate node
v" # v has length at most b. Therefore after |V| iterations, d[v] contains the length of the
shortest path from s to v such that you never run out of battery on the way. Clearly, the
vertices we can reach are then those v € V' with d[v] < b.

Again, each “bound improvement” update runs in time O(|E|), so the total running time
is O(|V|-|E)).



