
11.12.2023 — Georg Hasebe

Week 12 — Sheet 11
Algorithms and Data Structures



THANK YOU!❤ 
(won VIS Teaching Award!)



Exercise Sheet 11



Exercise 11.1





A B H

F

I C

G

D

E

enter leave
A
B
C
D
E
F
G
H
I

0

2

3
4

1

6
7

8

9

5
11

10

12
13

14

15

Q: A C GF D E H B





enter leave
A
B
C
D
E
F
G
H
I

0

2

3
4

1

6
7

8

9

5
11

10

12
13

14

15

(A,C,F,G,D,E,H,B)





Bob is currently in Zurich and wants to visit his friend that lives in Geneva. He 
wants to travel there by car and wants to use only highways.


His goal is to get to Geneva as cheap as possible.


He has a map of the cities in Europe and which ones are connected by highways 
(in both directions).


For each highway connecting two cities he knows how much fuel he will need for 
this part (depending on the length, condition of the road, speed limit, etc.) and 
how much this will cost him.


This cost might be different depending on the direction in which he travels.


Furthermore, for some connections between two cities, he has the option to take 
a passenger with him that will pay him a certain amount of money. Again this 
might be different depending on the direction he travels.



We assume that this option is only availabe to him between cities directly 
connected by a highway and that the passengers want to travel the direct road 
and would not agree to making a detour.


Also Bob has a small car, so he can only take at most one passenger with him.


It is possible that he gains more money from this than he has to pay for the fuel 
between two given cities but we assume that he has no way to gain an infinite 
amount of money, i.e. there is no round-trip from any city that earns him money.



• as cheap as possible


• in both directions


• how much this will cost him


• different depending on the direction in which he travels


• pay him a certain amount of money


• different depending on the direction he travels


• directly connected by a highway; want to travel the direct road; no detour


• at most one passenger


• It is possible that he gains more money; no way to gain an infinite amount of 
money; no round-trip from any city that earns him money

Shortest path
Undirected

Weighted Graph; Edge cost

Directed!
Gain money; lowers edge cost (lower? 
Negative!)

Only over one edge

No negative cycles





Now we change the problem slightly. Bob got a list from his friend of certain 
highways that are in a bad condition.


To not damage his car, he decided that he want to use at most one of these 
highways.


Again, model the problem as a graph problem such that you can directly apply 
one of the algorithms in the lecture, without modifications to the algorithm:

Subtask (b)



• highways that are in a bad condition


• to use at most one of these highways

Subtask (b)

Some edges change in some sense

Only use one single bad edge





Theory Recap



Kruskal’s Algorithm



Kruskal’s Algorithm
Minimum Spanning Tree

• Create a forest (a set of trees) initially consisting of a separate single-vertex 
tree for each vertex in the input graph.


• Sort the graph edges by weight. (increasing order)


• Loop through the edges of the graph, in ascending sorted order by their 
weight (from cheapest to most expensive). For each edge:


• Test whether adding the edge to the current forest would create a cycle (let’s 
say we have e = {u,v}; if u,v are already in the same tree than there exists a 
undirected path from u to v; adding e to the tree would create a cycle)


• If not, add the edge to the forest, combining two trees into a single tree



Kruskal’s Algorithm
Pseudocode



Kruskal’s Algorithm
Pseudocode (Wikipedia)

MAKE-SET, FIND-SET, UNION? How?



Kruskal’s Algorithm
union-find data structure (disjoint-set data structure)

We want: MAKE-SET, FIND-SET and UNION.


MAKE-SET: creates a set for every . This can be thought of as initially 
having  ZHK.


FIND-SET: finds the sets (ZHK) of  from some edge . This is 
important to not create cycles (refer to first Kruskal’s algorithm slide).


UNION: in case we add some edge  we want to merge the sets (ZHK) 
of  together.

v ∈ V
|V |

u, v e = {u, v}

e = {u, v}
u, v



Kruskal’s Algorithm
union-find data structure (disjoint-set data structure)

A few implementation details: 


• MAKE-SET is only used once in the beginning.


• How to implement a set (there are different ways of doing so)


• A set usually has a rank that indicates the size of the set. This is important for 
runtime optimizations (add the smaller set to the bigger set is faster than 
adding the bigger set to the smaller one)


• A node from a some set usually has a parent. If the parent of  is  (i.e. itself) it 
can be thought of the root of the set or the representant of a set (ZHK). This is 
used in order to know which vertex belongs to which set (ZHK).

x x



Kruskal’s Algorithm
union-find data structure (disjoint-set data structure)

A few implementation details: 


• FIND-SET tries to find the set some  belongs to. This can be 
implemented in a few ways (path compression/halving/splitting see 
Wikipedia)


• UNION merges two sets. The representant of the bigger set (i.e. the set with 
more nodes, meaning bigger size/rank) becomes the representant of the 
smaller set.

v ∈ V

https://en.wikipedia.org/wiki/Disjoint-set_data_structure


Kruskal’s Algorithm
union-find data structure (disjoint-set data structure)

A few implementation details: 


• Union-Find data structures can be a bit confusing and it really helps to try to 
visualize it.


• Sets become trees.


• The idea of parents can be visualized as Parent pointer trees.


• Go through examples!

https://en.wikipedia.org/wiki/Parent_pointer_tree


Kruskal’s Algorithm
Useful for exam

From FS23 https://exams.vis.ethz.ch/exams/b78ly1wf.pdf

https://exams.vis.ethz.ch/exams/b78ly1wf.pdf

