Exercise 11.2 Shortest paths with cheating (1 point).

Let G = (V, E) be a weighted, directed graph with weights ¢ : E'— R>(. We consider a variation of
the shortest path problem in G, where we are allowed to ‘cheat’ by setting a certain number of weights
to 0. Formally, for k € N, we write Cj, for the set of all weight functions v : £ — R>(on G with
v(e) # c(e) for at most k edges e € E.?

Given s,t € V, we wish to find a path P = (vy = s, v9,...,v; = t) in G which minimizes:

-1
ck(P) = 36131 Y(P), where y(P) := " ~((vi,vi41))-

i=1
We call such a path a ‘shortest path from s to ¢ with k cheats’

Recall that a naive implementation of Dijkstra’s algorithm finds the length of a shortest path in a
weighted graph (without cheating) in time O(|V|?).

b=We), drecked fuegnted | we%kF fuchion o E =R,
(o st of all okt /mhom y E—= W,
D B U R e
Ly

L]LW/\ : 5.+ 69

l/J(; (,Jo_U\Xr: pg{—b\ \0: (g:u*,] P UL= Jc) Ly I
Minalm (TeD (’k(P> S= ML XUO)
¥e Ci

Where X(_\'A> (b Lgum 0/ ol edse uéskh
w P

(a) Describe an algorithm which finds the length of a shortest path from s to ¢ with k cheats in time
O(|E|* - |V|?). Prove that your algorithm is correct, and achieves the desired runtime.

Do g el pasble ways of sebimg ko elges
Yo 0. Thee e L[%‘) Uagy o) picking
h edios Foom JEL Thy e 1o
Ohstra Qf‘) hmes> | yrelbing

('E‘) s O BtmY)

&
-k cambunationy L% £ edyes - ("“)

L
] {)Um‘wﬁﬂm bk «Cf)\e‘rmom . I\

(b) Describe an algorithm which finds the length of a shortest path from s to ¢ with k cheats in
time O ((k|V'|)?). Prove that your algorithm is correct, and achieves the desired runtime.

Hint: Construct a new graph G' = (V' E') whose vertex set V' consists of k + 1 copies of V. Choose
the edges E' and weights ¢’ in a clever way, and apply Dijkstra’s algorithm to G'.

Weset V' = {v® :v €V, £€{0,1,2,...,k}}, which has size |V’| = (k + 1) - |V|. We define E’
and ¢’ : E' — R> by:

V(v,w) e E,0<¢<k: (U(Z),w“)) € E' with c'(('v(e),'w(e))) = ¢((v,w)), (T1)
Vw,w)eE, 0<l<k—-1: w9 w*) e E with((v®,w*)) =0, (T2)
VO<t<k—1: @9ty e E with d((t© t(“l))— 0. (T3)

not -\ ¢ (15Q broversal o G

% onre (,(/le_o\¥

LT } C,Ov\mg,(/sf &[[, {’(6) Ul {’[/\ LQQ-(/(/\ O+ L\G/V\

Suppose k= 2 Lhen o cheal w2 g0

4 ° /\[/\Q
J — W na \—QQ— e &O\NV‘-

a >— e ' J fyock LMDV ED
J S(Q\PI/\ consiroerion
o o K JZAWA down e

~ . «
U"J “ M . {A CJ"GQ_}TA >
. {’)
J(A) ve (#h (A'ﬂg“j) QW}’ Yf of
/t’l

(L

t‘) ‘

We run Dijkstra’s algorithm on (G’, ¢) to find the length of a shortest path between s(*) and ¢(*)
in time O(|V'|?) < O((k|V)?).

Lorreckng sy -
Lofreceness =

e B e fle ij“« 0/ o shorkesr
pa*b\ %/O‘/\ S te { (A C&l((,> ol J‘L\

L(C/L\QQ_{S.

Lol L be 5[0) o J((M

e want o $ho v L =L

b&(.a«u&e ‘“/\—(/V\

Oy L L e
)

We show first that L' > L. If there is no path from s to t(*) in (G), then surely L' > L, so we
may assume there is a shortest path P’ = (Uial), cee Ué’”)) from s to t*) in (G’, ¢'). By definition
of E', we know that P = (v1,v2,...,v) is a path in G from s to ¢ (after possibly removing some
subsequent copies of ¢ from the path, corresponding to edges of type (T3), which have weight 0).
Since there are at most k edges of type (T2) in P’, we conclude that there is a weight function
v € Cj, such that y(P) = ¢/(P’). But that means L < ¢x(P) < L'.

C—

Cine Lk(P) 3 minimal

Gy Lz L

Next we show L > L. Let P = (v1,v2,...,v;) be a shortest path from s to ¢ in G with k cheats.
Again, we may assume such a path exists. Let v € Cj, be the weight function for which vy(P) =

¢k(P) = L. Now, consider the path P/ = (vgal), e ,véae)) in G', where ay, . .., a; are defined by
a1 =0,and, for1 < </,

_ {1 +1 0 ife((viet, vi) # Y((vie1, v3),

%= if ¢((vi-1,0:)) = ¥((vi-1,v3)).

This path is well-defined because ¢((v;—1, v;)) # v((vi—1, v;)) for at most k different i. By definition
of ¢, the length of P’ in (G’, ') is at most L. We know that vgal) = 50 and véae) = ¢ for some
0 < i < k. We can thus extend P’ to be a path P from 5() to ¢(*) using edges of type (T3) (whose

cost is zero). We conclude that L' < ¢/(P”) < 4(P) < L.

—
TYye—"
T m
(T
(

LI\ S @ L (s the drovkes Iﬂai(/\ L~ h

()

Since Y hos the seme Qéﬁ@. wefj“) s

¢ excgpk for ko 2dges / we

en counker & d(//é/e/vx{— edﬁe L-Jelj)\{_
(@i +1 i e((vieg,v)) # 7(vie1,v0)), > we cherge &ajer S,
e e we o éT L) g%e o whadh

ha > wenbwr bero f caw '+ be lover

+h&m Yo .

QU 5(@){(,_

Exercise 11.4 Driving from Zurich to Geneva (1 point).

(Slde 5)

(a) Model the problem as a graph problem such that you can directly apply one of the algorithms in
the lecture, without modifications to the algorithm:

(1) Describe your graph. What are the vertices, what are the edges and the weights of the edges?

The graph G = (V, E, w) is defined as follows: V is the set of cities on his map of Europe. There
are directed edges between the cities (in both directions) if they are connected by a highway.
The weight of any edge is the difference of the cost he needs to pay for the fuel for this highway

and the money that a passenger would pay him (if available, otherwise it is just the cost he
needs pay).

\/ = fees N Ewodﬂe/ (on (o m@p)
and (v, 0)
g Contains (i:L\r.u)j% l/ U () conne ched

\1

to U V(e [/\16(/\&_/0\\3. (d(/ﬁﬂjréa>
Cc:-F— Z

cle=(r)) = (/ud CQJ'f‘) — (ioélsaem$€f P"Lﬂ)

c— 7
\// avelable /fo‘/"‘

g 10 W .

(2) What is the graph problem that we are trying to solve?

Solution:

We are trying to find the shortest path from the vertex vzyich corresponding to Zurich and the
vertex Ugeneva cOrresponding to Geneva in the graph G. Note that since from no city he has a
roundtrip that gains him money, the graph G does not have negative cycles, so we are indeed
looking for a path and not a walk.

5(%3[6—50\1«@@ <ot Fes WéLUn.

Source Upoerda . déé'\’([ﬂg—’\’lo‘/\ : V enevo—

(3) Solve the problem using an algorithm discussed in the lecture (without modification).

Solution:

We can apply the Bellman-Ford algorithm to (G, vzurich) to find the shortest path from vzyich to
UGeneva (We have W, so Bellman-Ford works). Note that the edge weights might
be negative, so we cannot apply Dijkstra’s algorithm.

CS»@(de))

(b) Now we change the problem slightly. Bob got a list from his friend of certain highways that are
in a bad condition. To not damage his car, he decided that he want to use at most one of these
highways. Again, model the problem as a graph problem such that you can directly apply one of
the algorithms in the lecture, without modifications to the algorithm:

(1) Describe your graph. What are the vertices, what are the edges and the weights of the edges?

We define the graph G’ = (V'/, E’, w') as follows: The set of vertices is V' = V x {0, 1}. For
every edge e = (u,v) € E, if it is a normal highway, we have the edges ((u,0), (v,0)) and
((u,1),(v,1)) in E'. If it is a highway in bad condition, then we have the edge ((u,0), (v, 1))
in F’. The weight function w’ is as before: The weight of any edge is the difference of the cost
he needs to pay for the fuel for this highway and the money that a passenger would pay him
(if available, otherwise it is just the cost he needs pay).

U //om (o) . (’/1':([/‘(g(u‘>

. U= |/ < <O, 1Y =— aaaln Qﬁju) (&65\ x
o E‘ con fanmd <U\O, UO> ond (t/lﬂ, U‘A) '/
e = (u) 8 normal ond .

‘/ e 0 ba.d -

@ ' 54@\\93 Tre danme

This construction can be interpreted as follows: We have two levels in the graph G’, namely
V x {0} and V' x {1} and they are connected in such a way that it matches the problem
description. Highways in bad condition connect layer 0 to layer 1 (and only in this direction).
All other highways are present in both layer 0 and layer 1 (and do not cross between layers).
Consider a path in this modified graph G’. Since we have no edges from layer 1 to layer 0 and
whenever a highway in bad condition is used, the path moves from layer 0 to layer 1, this path
can use at most one highway in bad condition.

(2) What is the graph problem that we are trying to solve?

Solution:

We are trying to find the shortest path between (vzyrich, 0) and (vgeneva, 0) Or (VGeneva, 1) (Which-
ever is shorter). Again, since the graph has no negative cycles, we are indeed looking for a path
and not just a walk. Since we argued above that a path in G’ uses at most one highway in bad
condition, this is indeed what we are looking for (paths between (vzyich, 0) and (vUGeneva, 0) use
no highway in bad condition and paths between (vzyrich, 0) and (Vgeneva, 1) use exactly one).

Jrv%(a Souvce Shor ket P \in
e jo)
Soure - dtu(/(u/\ ; Jt 3¥(h0.*(0h e v &
N
v crene S N
° 0
W —— U Aoyt | &0
oo = b roed

Remark: If we wanted to model the problem as finding a single shortest path, we could add a vertex
t to the graph and add the two edges ((VGeneva; 0),t) and ((VGeneva;s 1),t). The weight of these
two edges can be set to 0. Then the goal would to find a shortest path between (vzyyich, 0) and t.
The shortest path from Zurich to Geneva would then be this shortest path without the last edge
((UGenevay Z), t)-

(3) Solve the problem using an algorithm discussed in the lecture (without modification).

Solution:

We can again apply the Bellman-Ford algorithm to the modified graph (G’, (vzurich, 0)) to find

the shortest paths from (vzurich, 0) to (VGeneva, 0) and (vUGeneva, 1) (We again have no negative
cycles, so Bellman-Ford works).

