Week 11 — Sheet 10

Algorithms and Data Structures

04.12.2023¢{: — Georg Hasebe

Debriefing of Submissions

On External Resources

e ChatGPT

* |n the case of the use of external resources (i.e. resources not from lecture
notes, script, exercise sheets) we expect the solution to be complete and
explained well! (especially the parts that were not covered!)

https://chat.openai.com/share/ac1c4ab1-f0f1-4e31-85f5-e9504083c9b7

Other Remarks

» Calling DFS on all vertices

e Justification for DP recursion

Exercise Sheet 10

Exercise 10.2

Exercise 10.2 Depth-first search (1 point).

Execute a depth-first search (Tiefensuche) on the following graph. Use the algorithm presented in the
lecture. Always do the calls to the function “visit” in alphabetical order, i.e. start the depth-first search
from A and once “visit(A)” is finished, process the next unmarked vertex in alphabetical order. When
processing the neighbors of a vertex, also process them in alphabetical order.

(A QV/‘@

V4

(a) Mark the edges that belong to the depth-first forest (Tiefensuchwald) with a “T” (for tree edge).

(b) For each vertex in the depth-first forest, give its pre- and post-number.

(1,16) (5,6)

0
1\,
o

(14,15)

A(1,16) B(5,6) C(2,13) D(3,8) E(4,7) F(14,15) G(9,12) H(10,11) 1(17,18). (1 77] 8)

(c) Give the vertex ordering that results from sorting the vertices by pre-number. Give the vertex
ordering that results from sorting the vertices by post-number.

(1,16) (5,6) (10,11)

T

_L

Pre-ordering: A, C,D,E, B, G, H, F, L.
Post-ordering: B, E, D, H, G, C, F, A, L.

(d) Mark every forward edge (Vorwirtskante) with an “F”, every backward edge (Riickwdrtskante) with
a "B”, and every cross edge (Querkante) with a "C”.

«(;OY ard
(W it Jm:e\

C\ 059

(14,15)

(17,18)

O
2

N ©
“_L “_L
> 0>

(f) Draw a scale from 1 to 18, and mark for every vertex v the interval I, from pre-number to post-
number of v. What does it mean if I,, C I, for two different vertices © and v?

} A 1|6 1|7 I 1|8
I ? C 1|3 1|4 F 1|5 l l I
| | | |
A S S BN
I éll E 'I7 I I 1|O H 1|1 I
| | | |

2

If I, C I, for two different vertices u and v, then w is visited during the call of visit(v).

(g) Consider the graph above where the edge from B to A is removed and an edge from F to I is added.
How does the execution of depth-first search change? Does the graph have a topological ordering?
If yes, write down the topological ordering we get from the execution of depth-first search; if no,
argue how we can use the execution of depth-first search to find a directed cycle. If you sort the

vertices by pre-number, does this give a topological sorting?

Remove Bto A, add F to | @

(14,17)

Now the graph is a DAG, thus
reverse post-ordering gives a
topological ordering: (15,16)

A FI,C G, HD,EB @

O
2

N ©
“_L “_L
@£ >

Exercise 10.4.a.

Exercise 10.4.b.-d.

MOSARADU\((/\, m)

o s\l el a) unuvidite 9

L < Q/ // {(MW+5 ((5}‘

/OV \/V\U\S\\—(A U & \/
DES_Alou, L)

e b s\l el a) nui ke d

rever ye [,
[&— /7' I Loy %ﬁ c9wp0hemkj
(reake L0 = (O, E—A) /roM A

Jor wusikid v e L [orber o/ L
T é’_'ﬂ // 510\318 Comy@hé’m -
DES_ 72(u, T)

P

Q\dé* | +0 (,

(t+or n C // (OnFOIN S G\ coW\IoOhev\’ts

DFS_ A (v, L)

W\@\vl»\ J A S vw\}éfj

/Of‘ W\u\s\teol n £ M&LUB // mélgb\\m{) o/ U
T O
DFES _ 4 ([w)

sdd o 1o bedk q% L

OFS _2(¢. T)

[/V\NIA g JARRN V\)\‘éd

a&d Va +9 Comx[oov\m/ﬁr T
/OF vvw\s\l(eol VS I\J&—ACU‘B // ﬂélg\f\bgm 0/Z U

DFS _2(w) noh

Lonk g -

— cals 4o DES_4 DES _Z

INA

r(u{V&\V\B L () 1% 0(v\>

- le{,fth Lo &A/‘) (D

=D Dln+)

Example (1«2 o%
/
Oy 7

Condensation Graph
‘o "
@ = h.
T
@@

Condensation Graph

Let post|C_i] be the
maximum of the post number
of all vertices in C_1.

If there is an edge from C_i to
C_j we must have post[C_i] >
post[C_]]

Proper Proof:
https://cp-algorithms.com/graph/strongly-connected-components.html

Going through the vertices in
reverse post order means
going through the
components Iin reverse order
of post|C_]I]

Condensation Graph

Going through the vertices in
reverse post order means
going through the
components Iin reverse order
of post|C_I]

Now reverse the
condensation graph.

Now going through vertices
IN reverse post order ensures
we go through the
components one by one.

IN reverse post order ensures
we go through the
components one by one.

Condensation Graph @ @
Now going through vertices Cl @ C3

e al el a2 unuisiked

[& / l/ Ly 9/ Componen) C @
(reate Lol = E—A) /.row\ I 2 @
/OV \/r\u\s(‘ruﬁ Yo, L // | Ofdfif O/ [,

1 6_'% Il 5“/\3(@ Com,p@hé’mjr OFS 2l T)

V/\NIA J JARRN \/\5\4({(3

OFS—~ Z<U,T> 0odd U to Com{gohom\— T C4

——

Q\d(j ’ "’0 C For vamybed u € !\J&—ACUB // MlSNOQrJ O/ U
DFS _ A w) "

(b)* Let L = |v1,v9,...,v,] be a list containing the vertices of GG in the reversed post-order of a DFS.
Show that L has the following property:

(c) Let 5 = (V, %) be the directed graph obtained by inverting all edges in G. Let v; be the first

element of L. Let W C V be the set of vertices w for which there is a directed path from v; to w
L J E L
in G. Show that W is a strongly connected component of G.

(d) Describe an algorithm that outputs all strongly connected components of G. The runtime of your
algorithm should be at most O(n 4+ m). Prove that your algorithm is correct, and achieves the
desired runtime.

Debriefing of Exercise Sheet 10

Theory Recap

Bellman Ford’s Algorithm

Bellman Ford

Single-source shortest path for weighted graph (now also negative weights!)

* Like Dijkstra, Bellman Ford is an algorithm for finding the shortest paths from
a single source .

* |Like Dijkstra, Bellman Ford works with edge relaxation

* Unlike Dijkstra, Bellman Ford works on graphs with negative weights as well
(and detects negative cycles!)

* Unlike Dijkstra, Bellman Ford doesn’t (greedily) relax edges using a priority
queue, but relaxes all edges each iteration.

Bellman Ford

Idea

« Apathinagraph G = (V, E) is maximally of length | V| — 1 (recall graph
exercises!)

» If we relax all edges | V| — 1 times, the values for the shortest path from s to
any v € V shouldn’t change anymore.

 Unless, there Is a negative cycle! In this case, the algorithm simply reports the
finding of a negative cycle and terminates.

 Using these ideas we do the following: relax all edges | V| — 1 times. Relax all
edges once more, Iif distances decrease, we have would have a path of length

| V|, meaning a negative cycle exists in the graph.

Bellman

Pseudocode

Ford

BELLMAN-FORD(G = (V, E), s)

1 for each v € V\{s} do

2

d|v]| < 00; p|v] ¢ null

3 d|s] + 0; p|s| < null
4 fori«+ 1,2,...,|V|—1do

0
6
7

8

for each (u,v) € E do

if d|v| > d|u| + w((u,v)) then
dlv]| dlu] + w((u,v))
plv] + u

9 for each (u,v) € E do

10
11

if du] + w((u,v)) < d[v] then

> Initialisiere fiir alle Knoten die
> Distanz zu s sowie Vorgdnger

> Initialisierung des Startknotens
> Wiederhole |V| — 1 Mal

> Iteriere tiber alle Kanten (u,v)
> Relaziere Kante (u,v)

> Berechne obere Schranke

> Speichere u als Vorginger von v
> Priife, ob eine weitere Kante

> relaxiert werden kann

Melde Kreis mit negativem Gewicht

Bellman Ford

Runtime

 Relax all edges | V| — 1 times.

* Relax all edges once more.
» Edge relaxation is in O(1).

» We have a total runtime of O(| V|| E|).

Bellman Ford

Java Implementation

Notice how we handle a
potential overflow!

public static int[] bellmanFord(ArrayList<Edge> E, int n, int m, int s) {

int[] P = new 1int[n]; // store predecessors of nodes

int[] D = new int[n]; // store distance from start to nodes

for (int 1
D[s] = 0;

for (1int 1

for (Edge
if (DL

for (Edge e :

return null;

return D;

9; 1 < n; ++1) D[1] = Integer.MAX_VALUE;

1; 1 < n; ++1) {

e
e
e
e

: E) {

. from]

.to]
.to]

E) {
if (D[e.from] != Integer.MAX_VALUE && D[e.to] > D[e.from] + e.weight) {
System.out.println("negative cycle detected.");

= Integer .MAX_VALUE && D[e.to] > D[e.from] + e.weight) {
Dle.from] + e.weight;
e.from;

Prim’s Algorithm

What is a Spanning Tree?

« A spanning tree T of an undirected graph G is a subgraph that is a tree which
includes all the vertices of G.

 Example:

* Can there be multiple?

e Yes!

A minimum spanning tree (MST) is a
spanning tree 1, where the sum of all

edges in 1 is minimal. Can there be
multiple? Yes!

Prim
Finding the Minimum Spanning Tree (MST)

* Like Dijkstra, Prim greedily selects edges using a priority queue. (cheaper
means higher priority)

 Unlike Dijkstra, the priority queue used in Prim only stores the vertex v and

the cheapest edge leading to it (from any vertex that is neighbor of v). The
edge weight is the priority.

Prim
Idea

1. Initialize a tree with a single vertex, chosen arbitrarily from the graph (we
start from here).

2. Grow the tree by one edge: Of the edges that connect the tree to the vertices
not yet in the tree, find the minimum-weight edge, and add the edge
(including the vertex it connects to) to the tree.

3. Repeat step 2 until the tree contains all vertices (i.e. until the tree is a
spanning tree)

Prim

Implementation

public static int[] prim(List<List<Edge>> G, int n, 1nt source) { while (!PQ.isEmpty()) {
int[] C = new 1int[n]; // store cheapest connection cost int u = PQ.poll().key;
int[] P = new int[n]; // store predecessors of nodes
if (1nMST[ul]) continue;
for (int 1 = 0; 1 < n; ++1) {
C[i] = Integer.MAX_VALUE; 1InMST[u] = true;
P[1] = -1;
1 for (Edge e : G.get(u)) {
if (!'inMST[e.from] && e.weight < Cl[e.to]) {
Cle.from] = e.weight;
Ple.to] = u;
PQ.add(new Node(e.from, e.weight));

Clsource] = 9;

PriorityQueue<Node> PQ = new PriorityQueue<>();
for (int 1 = 9; 1 < n; ++1) {

PQ.add(new Node(i, Integer.MAX_VALUE));
by

PQ.add(new Node(source, Cl[sourcel));

. . _ . return P;
boolean[] inMST = new boolean[n]; // store if node is in MST

Prim

Runtime

* Using a binary heap as a priority queue we can achieve a runtime of
O((|V|+ |E|)log|V]) (like Dijkstra).

Example on Blackboard

while (!PQ.isEmpty()) {
int u = PQ.poll().key;

1f (1nMST[ul) continue;

1inMST[u] = true;

for (Edge e : G.get(u)) {
if (!inMST[e.from] && e.weight < Cl[e.to]) {

Cle.from] = e.weight;
Ple.to] = u;
PQ.add(new Node(e.from, e.weight));

