
04.12.2023🎉 — Georg Hasebe

Week 11 — Sheet 10
Algorithms and Data Structures

Debriefing of Submissions

On External Resources
• ChatGPT

• In the case of the use of external resources (i.e. resources not from lecture
notes, script, exercise sheets) we expect the solution to be complete and
explained well! (especially the parts that were not covered!)

https://chat.openai.com/share/ac1c4ab1-f0f1-4e31-85f5-e9504083c9b7

Other Remarks
• Calling DFS on all vertices

• Justification for DP recursion

Exercise Sheet 10

Exercise 10.2

A B H

F

I C

G

D

E
T

T

T

T

T

T

T

(1,16)

(17,18)

(2,13) (3,8)

(4,7)(9,12)

(5,6) (10,11)

(14,15)

A B H

F

I C

G

D

E
T

T

T

T

T

T

T

(1,16)

(17,18)

(2,13) (3,8)

(4,7)(9,12)

(5,6) (10,11)

(14,15)

A B H

F

I C

G

D

E
T

T

T

T

T

T

T

(1,16)

(17,18)

(2,13)

(3,8)

(4,7)(9,12)

(5,6) (10,11)

(14,15)

A B H

F

I C

G

D

E

T

T

T

T

T

T

T

(1,16)

(17,18)

(2,13) (3,8)

(4,7)(9,12)

(5,6) (10,11)

(14,15)

B

C CC

C

C

F

F

F

C

A B H

F

I C

G

D

E

T

T

T

T

T

T

T

(1,18)

(15,16)

(2,13) (3,8)

(4,7)(9,12)

(5,6) (10,11)

(14,17)

C CC

C

C

F

F

F

CRemove B to A, add F to I

TNow the graph is a DAG, thus
reverse post-ordering gives a
topological ordering:

A, F, I, C, G, H, D, E, B

Exercise 10.4.a.

Exercise 10.4.b.-d.

2

Example

Condensation Graph

Condensation Graph
C1

C2

C4

C3Let post[C_i] be the
maximum of the post number
of all vertices in C_i.

If there is an edge from C_i to
C_j we must have post[C_i] >
post[C_j]

Proper Proof:

https://cp-algorithms.com/graph/strongly-connected-components.html

Going through the vertices in
reverse post order means
going through the
components in reverse order
of post[C_i]

Condensation Graph
C1

C2

C4

C3Going through the vertices in
reverse post order means
going through the
components in reverse order
of post[C_i]

Now reverse the
condensation graph.

Now going through vertices
in reverse post order ensures
we go through the
components one by one.

Condensation Graph
C1

C2

C4

C3Now going through vertices
in reverse post order ensures
we go through the
components one by one.

Debriefing of Exercise Sheet 10

Theory Recap

Bellman Ford’s Algorithm

Bellman Ford
Single-source shortest path for weighted graph (now also negative weights!)

• Like Dijkstra, Bellman Ford is an algorithm for finding the shortest paths from
a single source .

• Like Dijkstra, Bellman Ford works with edge relaxation

• Unlike Dijkstra, Bellman Ford works on graphs with negative weights as well
(and detects negative cycles!)

• Unlike Dijkstra, Bellman Ford doesn’t (greedily) relax edges using a priority
queue, but relaxes all edges each iteration.

s

Bellman Ford
Idea

• A path in a graph is maximally of length (recall graph
exercises!)

• If we relax all edges times, the values for the shortest path from to
any shouldn’t change anymore.

• Unless, there is a negative cycle! In this case, the algorithm simply reports the
finding of a negative cycle and terminates.

• Using these ideas we do the following: relax all edges times. Relax all
edges once more, if distances decrease, we have would have a path of length

, meaning a negative cycle exists in the graph.

G = (V, E) |V | − 1

|V | − 1 s
v ∈ V

|V | − 1

|V |

Bellman Ford
Pseudocode

Bellman Ford
Runtime

• Relax all edges times.

• Relax all edges once more.

• Edge relaxation is in .

• We have a total runtime of .

|V | − 1

O(1)

O(|V | |E |)

Bellman Ford
Java Implementation

Notice how we handle a
potential overflow!

Prim’s Algorithm

What is a Spanning Tree?
• A spanning tree of an undirected graph is a subgraph that is a tree which

includes all the vertices of .

• Example:

• Can there be multiple?

• Yes!

•

T G
G

A minimum spanning tree (MST) is a
spanning tree , where the sum of all
edges in is minimal. Can there be
multiple? Yes!

T
T

Prim
Finding the Minimum Spanning Tree (MST)

• Like Dijkstra, Prim greedily selects edges using a priority queue. (cheaper
means higher priority)

• Unlike Dijkstra, the priority queue used in Prim only stores the vertex and
the cheapest edge leading to it (from any vertex that is neighbor of). The
edge weight is the priority.

v
v

Prim
Idea

1. Initialize a tree with a single vertex, chosen arbitrarily from the graph (we
start from here).

2. Grow the tree by one edge: Of the edges that connect the tree to the vertices
not yet in the tree, find the minimum-weight edge, and add the edge
(including the vertex it connects to) to the tree.

3. Repeat step 2 until the tree contains all vertices (i.e. until the tree is a
spanning tree)

Prim
Implementation

Prim
Runtime

• Using a binary heap as a priority queue we can achieve a runtime of
 (like Dijkstra).O((|V | + |E |)log |V |)

Runtime:

(see script for
proof.)

O((|V | + |E |)log |V |)

Example on Blackboard

