Exercise 10.1  Eulerian tours in multigraphs (1 point).

A multigraph G = (V, E) is a graph which is permitted to have multiple copies of the same edge.
That is, the edges E form a multiset (a set in which elements are allowed to occur multiple times). For
example, the multigraph with V' = {1,2,3,4} and E = {{A, B}, {A, B}, {A,D},{B,C},{A,C}}is
depicted below. To avoid confusion, the term simple graph is sometimes used to indicate that duplicate

edges are not allowed.

(a) An Eulerian tour in a multigraph is a tour which visits every edge exactly once. If multiple copies
of an edge exist, the tour should visit each of them exactly once. Given a multigraph G = (V, E),
describe an algorithm which constructs a simple graph G’ = (V’, E’) such that G has a Eulerian
tour if and only if G’ has a Eulerian tour. The new graph should satisfy |V’| < |V| + |E|, and
|E'| < 2-|E|. The runtime of your algorithm should be at most O(n + m). You are provided with

the number of vertices n and an adjacency list of G (if there are multiple edges between v, w € V,
then w appears that many times in the list of neighbours of v).
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(b)* Let G = (V, E) be a simple graph, and let f : E — NU{0} be a function. A Eulerian f-tour of G is
a tour which visits each edge e € E exactly f(e) times. Describe an algorithm which constructs a
simple graph G’ = (V’, E’) such that G has a Eulerian f-tour if and only if G’ has a Eulerian tour.
The new graph should satisfy [V'| < [V[+ " _p f(e), and |[E'| <237 _ . f(e). The runtime of
your algorithm should be at most O(n +m + > .. f(e)).

Solution:

To construct G/, first, we remove all edges e from G with f(e) = 0. Then, we construct a multigraph
H = (V, F), where F contains exactly f(e) copies of each edge in G. Note that |[F| = > 5 f(e).
Note also that, by definition, an Eulerian tour exists in H if and only if a Eulerian f-tour exists in
G. Finally, we use part (a) to convert H into a simple graph G’ = (V’, E’), where we know that
VI S|VIHIF| = V4 Xecp fle) and [E'| <2 |[F[ =2- 3 f(e).



Exercise 10.4  Strongly connected components (1 point).

Let G = (V, E) be a directed graph with n vertices and m edges. Recall from Exercise 9.5 that two
distinct vertices v, w € V are strongly connected if there exist both a directed path from v to w, and

from w to v.

The vertices of GG can be partitioned into disjoint subsets V1, Va, ..., Vi C V withV = ViUWVU.. .UV},
such that any two distinct vertices v, w € V are strongly connected if and only if they are in the same
subset V, for some 1 < ¢ < k. The subsets V} are called the strongly connected components of G.

As in Exercise 9.5, you are provided with the number of vertices n, and the adjacency list Adj of G.
(a) Describe an algorithm that outputs the strongly connected components of G in time O(n - (n +m)).

Hint: Apply the algorithm of Exercise 9.5 several times. After each application, remove a vertex from G.
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Solution:
For each v € V, create a list L, = [v]. We iteratively apply the following procedure:

(i) Apply the algorithm of Exercise 9.5 to find two strongly connected vertices, say v, w in G. If
no such vertices exist, stop and output L, for each vertex v that is still in G.
(iii) For every in-neighbor x of w (except possibly v) add an edge (x,v) to G. For every out-

neighbor y of w (except possibly v) add an edge (v, y) to G. Then remove w from G.

For the runtime of the algorithm, note that in each iteration, one vertex is removed from G, and so
there can be at most n iterations. Each iteration can be executed in time O(n + m), leading to total

runtime O(n - (n + m)).
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