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Debriefing of Submissions



Graph Theory
• Be more formal and rigorous!


• Graphs are mathematical objects like e.g. functions and so if tasked to prove 
something for graphs fulfilling certain properties it doesn’t suffice to think of a 
few small examples. Instead we have to be more general!


• ? Two or more ZHK!


• Ex. 8.1.: Pigeonhole? What is it? Where did you use it?

vcut



Feedback
• Not happy with your feedback? Come and talk to me.


• Sometimes more comments, sometimes none.



Proof by induction?



Proof by induction? Counterexample



Exercise Sheet 9



Debriefing of Exercise Sheet 9



Theory Recap



Dijkstra’s algorithm



Dijkstra’s algorithm
• We have: a weighted Graph  with nonnegative weights and a 

starting vertex .


• We want: shortest paths in  starting from .

G = (V, E)
s ∈ V

G s



Dijkstra’s algorithm
• You can think of Dijkstra’s algorithm as generalizing breadth-first search to 

weighted graphs. 


• A wave emanates from the source, and the first time that a wave arrives at a 
vertex, a new wave emanates from that vertex. 


• Whereas breadth-first search operates as if each wave takes unit time to 
traverse an edge, in a weighted graph, the time for a wave to traverse an edge 
is given by the edge’s weight. 


• Because a shortest path in a weighted graph might not have the fewest 
edges, a simple, first-in, first-out queue won’t suffice for choosing the next 
vertex from which to send out a wave.

Introduction to Algorithms, 22.3 Dijkstra’s Algorithm
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Confusion
Many different variants

Lecture Notes
Introduction to Algorithms Book Lecture Script

Wikipedia



What should I learn?



What should I learn for theory?
• Work with the lecture notes and the script, since that’s what you are examined 

on.


• Additional material can often help with understanding in case the before 
mentioned material is confusing, but you should generally never use things/
theorems/runtimes etc. that we didn’t cover in lectures.



Dijkstra
Pseudocode

Runtime:





(see script for 
proof; or see next 
slide which I found 
to be more 
understandable)

O(( |V | + |E | )log |V | )



Dijkstra’s Runtime Analysis

Introduction to Algorithms, 22.3 Dijkstra’s Algorithm Analysis

Lecture Script

Introduction to Algorithms, 22.3 Dijkstra’s Algorithm Analysis



Runtime:





(see script for 
proof.)

O(( |V | + |E | )log |V | )

Example on Blackboard



What should I learn for CodeExpert?
• The variants differ mostly in the usage of the data structure storing the 

vertices


• Normal queue, priority queue, start with all vertices in the queue, only insert 
the start vertex in the queue at the start, decrease key, re-insert vertices…



Java’s PriorityQueue

No decrease key method?🤨

https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html



Re-Insertion instead decrease key
• Instead of decreasing the key, we could also just reinsert the node again 

(allowing for the same node appearing multiple times in the priority queue) but 
with the decreased priority.


• Questions that naturally arise are: How does this re-insertion affect the 
runtime? How does it change the pseudocode and concrete implementation?



Re-insertion runtime analysis (informally)
• We add nodes when we reach them through an edge (inner for loop). Thus we 

have at most  insert operations.


• The while loop breaks only if the queue is empty. Thus we also have  
dequeue operations (extract and delete from queue).


• Denoting the time it takes for an insert operation with  and the time it takes for 
an dequeue operation with  we get .


• If  is the size of a heap, we already learned that both dequeue and insert is in 
 (recall of repair heap).


• Now what is the size of the heap? Since we have at most  insert operations 
that is also our size.

|E |

|E |

Ti
Td O( |E | ⋅ Ti + |E | ⋅ Td)

n
O(log n)

|E |



Re-insertion runtime analysis (informally)
• Both  and  are in , thus  = 




• Notice that for simple connected graphs  since




• Therefore we have  =  for simple 
connected graphs

Ti Td O(log |E | ) O( |E | ⋅ Ti + |E | ⋅ Td)
O( |E | ⋅ log |E | )

O(log |E | ) = O(log |V | )
|V | − 1 ≤ |E | ≤ ( |V |

2 ) ≤ |V |2

O( |E | ⋅ log |E | ) O( |E | ⋅ log |V | )



Re-insertion vs. decrease key runtime
• The re-insertion version has actually been found to achieve faster computing 

times in practice, which this paper shows:

https://www3.cs.stonybrook.edu/~rezaul/papers/TR-07-54.pdf



Java Implementation 
(from my github repo)


