
27.11.2023 — Georg Hasebe

Week 10 — Sheet 9
Algorithms and Data Structures

Debriefing of Submissions

Graph Theory
• Be more formal and rigorous!

• Graphs are mathematical objects like e.g. functions and so if tasked to prove
something for graphs fulfilling certain properties it doesn’t suffice to think of a
few small examples. Instead we have to be more general!

• ? Two or more ZHK!

• Ex. 8.1.: Pigeonhole? What is it? Where did you use it?

vcut

Feedback
• Not happy with your feedback? Come and talk to me.

• Sometimes more comments, sometimes none.

Proof by induction?

Proof by induction? Counterexample

Exercise Sheet 9

Debriefing of Exercise Sheet 9

Theory Recap

Dijkstra’s algorithm

Dijkstra’s algorithm
• We have: a weighted Graph with nonnegative weights and a

starting vertex .

• We want: shortest paths in starting from .

G = (V, E)
s ∈ V

G s

Dijkstra’s algorithm
• You can think of Dijkstra’s algorithm as generalizing breadth-first search to

weighted graphs.

• A wave emanates from the source, and the first time that a wave arrives at a
vertex, a new wave emanates from that vertex.

• Whereas breadth-first search operates as if each wave takes unit time to
traverse an edge, in a weighted graph, the time for a wave to traverse an edge
is given by the edge’s weight.

• Because a shortest path in a weighted graph might not have the fewest
edges, a simple, first-in, first-out queue won’t suffice for choosing the next
vertex from which to send out a wave.

Introduction to Algorithms, 22.3 Dijkstra’s Algorithm

Example

s

a
b

c

d
e

s

a
b

c

d
e

To a b c d e

Shortest
Path

from s
4 2 5 3 6

Confusion
Many different variants

Lecture Notes
Introduction to Algorithms Book Lecture Script

Wikipedia

What should I learn?

What should I learn for theory?
• Work with the lecture notes and the script, since that’s what you are examined

on.

• Additional material can often help with understanding in case the before
mentioned material is confusing, but you should generally never use things/
theorems/runtimes etc. that we didn’t cover in lectures.

Dijkstra
Pseudocode

Runtime:

(see script for
proof; or see next
slide which I found
to be more
understandable)

O((|V | + |E |)log |V |)

Dijkstra’s Runtime Analysis

Introduction to Algorithms, 22.3 Dijkstra’s Algorithm Analysis

Lecture Script

Introduction to Algorithms, 22.3 Dijkstra’s Algorithm Analysis

Runtime:

(see script for
proof.)

O((|V | + |E |)log |V |)

Example on Blackboard

What should I learn for CodeExpert?
• The variants differ mostly in the usage of the data structure storing the

vertices

• Normal queue, priority queue, start with all vertices in the queue, only insert
the start vertex in the queue at the start, decrease key, re-insert vertices…

Java’s PriorityQueue

No decrease key method?🤨

https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html

Re-Insertion instead decrease key
• Instead of decreasing the key, we could also just reinsert the node again

(allowing for the same node appearing multiple times in the priority queue) but
with the decreased priority.

• Questions that naturally arise are: How does this re-insertion affect the
runtime? How does it change the pseudocode and concrete implementation?

Re-insertion runtime analysis (informally)
• We add nodes when we reach them through an edge (inner for loop). Thus we

have at most insert operations.

• The while loop breaks only if the queue is empty. Thus we also have
dequeue operations (extract and delete from queue).

• Denoting the time it takes for an insert operation with and the time it takes for
an dequeue operation with we get .

• If is the size of a heap, we already learned that both dequeue and insert is in
 (recall of repair heap).

• Now what is the size of the heap? Since we have at most insert operations
that is also our size.

|E |

|E |

Ti
Td O(|E | ⋅ Ti + |E | ⋅ Td)

n
O(log n)

|E |

Re-insertion runtime analysis (informally)
• Both and are in , thus =

• Notice that for simple connected graphs since

• Therefore we have = for simple
connected graphs

Ti Td O(log |E |) O(|E | ⋅ Ti + |E | ⋅ Td)
O(|E | ⋅ log |E |)

O(log |E |) = O(log |V |)
|V | − 1 ≤ |E | ≤ (|V |

2) ≤ |V |2

O(|E | ⋅ log |E |) O(|E | ⋅ log |V |)

Re-insertion vs. decrease key runtime
• The re-insertion version has actually been found to achieve faster computing

times in practice, which this paper shows:

https://www3.cs.stonybrook.edu/~rezaul/papers/TR-07-54.pdf

Java Implementation
(from my github repo)

