Week 10 — Sheet 9

Algorithms and Data Structures

Debriefing of Submissions

Graph Theory

- Be more formal and rigorous!
- Graphs are mathematical objects like e.g. functions and so if tasked to prove something for graphs fulfilling certain properties it doesn't suffice to think of a few small examples. Instead we have to be more general!
- v_{cut} ? Two or more ZHK!
- Ex. 8.1.: Pigeonhole? What is it? Where did you use it?

Feedback

- Not happy with your feedback? Come and talk to me.
- Sometimes more comments, sometimes none.

Proof by induction?

(e) Suppose in a graph G every pair of vertices v, w has a common neighbour (i.e., for all distinct vertices v, w, there is a vertex x such that $\{v, x\}$ and $\{w, x\}$ are both edges). Then there exists a vertex p in G which is a neighbour of every other vertex in G (i.e., p has degree n-1).

Proof by induction? Counterexample

(e) Suppose in a graph G every pair of vertices v, w has a common neighbour (i.e., for all distinct vertices v, w, there is a vertex x such that $\{v, x\}$ and $\{w, x\}$ are both edges). Then there exists a vertex p in G which is a neighbour of every other vertex in G (i.e., p has degree n-1).

Exercise Sheet 9

Debriefing of Exercise Sheet 9

Theory Recap

Dijkstra's algorithm

Dijkstra's algorithm

- We have: a weighted Graph G = (V, E) with nonnegative weights and a starting vertex $s \in V$.
- We want: shortest paths in G starting from s.

Dijkstra's algorithm

- You can think of Dijkstra's algorithm as generalizing breadth-first search to weighted graphs.
- A wave emanates from the source, and the first time that a wave arrives at a vertex, a new wave emanates from that vertex.
- Whereas breadth-first search operates as if each wave takes unit time to traverse an edge, in a weighted graph, the time for a wave to traverse an edge is given by the edge's weight.
- Because a shortest path in a weighted graph might not have the fewest edges, a simple, first-in, first-out queue won't suffice for choosing the next vertex from which to send out a wave.

Example

То	a	b	C	d	e
Shortest Path from s	4	2	5	3	6

Confusion

Many different variants

```
Dijkstra (s):
Sty [Ht make-heap(V), decrease-key(H,s,o)]
WHILE S = V:
   wahle v* EVIS mit d[v*] minimal
  [ v* = extract-min (H)]
  S < S u { v*}
  FOR (v*, v) eE, v &S:
     d[v] \leftarrow \min \{ d[v], d[v^*] + C(v, v^*) \}
     decrease-key (H, V, d [V])]
```

Lecture Notes

```
function Dijkstra(Graph, source):
                                                         // Initialization
       dist[source] \leftarrow 0
       create vertex priority queue Q
       for each vertex v in Graph.Vertices:
            if v \neq source
                 dist[v] \leftarrow INFINITY
                                                         // Unknown distance from source to v
                 prev[v] \leftarrow UNDEFINED
                                                         // Predecessor of v
            Q.add_with_priority(v, dist[v])
11
12
13
14
       while Q is not empty:
                                                         // The main loop
            u \leftarrow Q.\text{extract\_min()}
                                                         // Remove and return best vertex
                                                         // Go through all v neighbors of u
            for each neighbor v of u:
                 alt \leftarrow dist[u] + Graph.Edges(u, v)
                if alt < dist[v]:</pre>
                     dist[v] \leftarrow alt
                     prev[v] \leftarrow u
21
                     Q.decrease_priority(v, alt)
22
       return dist, prev
```

Wikipedia

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = \emptyset

4 for each vertex u \in G. V

5 INSERT(Q, u)

6 while Q \neq \emptyset

7 u = \text{EXTRACT-MIN}(Q)

8 S = S \cup \{u\}

9 for each vertex v in G. Adj[u]

10 RELAX(u, v, w)

11 if the call of RELAX decreased v. d

DECREASE-KEY(Q, v, v. d)
```

```
\text{Dijkstra}(G = (V, E), s)
    1 for each v \in V \setminus \{s\} do
    2 d[v] \leftarrow \infty; p[v] \leftarrow \mathbf{null}
    3 \ d[s] \leftarrow 0; p[s] \leftarrow \mathbf{null}
    4 \ Q \leftarrow \emptyset
    5 Insert(s, 0, Q)
    6 while Q \neq \emptyset do
            u \leftarrow \text{Extract-Min}(Q)
            for each (u,v) \in E do
                if p[v] = null then
                    d[v] \leftarrow d[u] + w((u,v))
                    p[v] \leftarrow u
                    \mathrm{Enqueue}(v,d[v],Q)
                else if d[u] + w((u, v)) < d[v] then
                    d[v] \leftarrow d[u] + w((u,v))
                    p[v] \leftarrow u
  15
                    DECREASE-KEY(v, d[v], Q)
  16
```

What should I learn?

What should I learn for theory?

- Work with the lecture notes and the script, since that's what you are examined on.
- Additional material can often help with understanding in case the before mentioned material is confusing, but you should generally never use things/ theorems/runtimes etc. that we didn't cover in lectures.

Dijkstra

Pseudocode

Runtime:

$$O((|V| + |E|)\log|V|)$$

(see script for proof; or see next slide which I found to be more understandable)

$\operatorname{Dijkstra}(G = (V, E), s)$

1	for each $v \in V \backslash \{s\}$ do	\triangleright	Initialisiere für alle Knoten die
2	$d[v] \leftarrow \infty; p[v] \leftarrow \mathbf{null}$	\triangleright	Distanz zu s sowie Vorgänger
3	$d[s] \leftarrow 0; p[s] \leftarrow \mathbf{null}$	\triangleright	Initialisierung des Startknotens
4	$Q \leftarrow \emptyset$	\triangleright	$Leere\ Priorit\"{a}tswarteschlange\ Q$
5	$\operatorname{Insert}(s,0,Q)$	\triangleright	$F\ddot{u}ge\ s\ zu\ Q\ hinzu$
6	while $Q \neq \emptyset$ do		
7	$u \leftarrow \text{Extract-Min}(Q)$	\triangleright	$Aktueller\ Knoten$
8	for each $(u,v) \in E$ do	\triangleright	$In spiziere\ Nach folger$
9	$\mathbf{if}\ p[v] = \mathbf{null}\ \mathbf{then}$	\triangleright	$v\ wurde\ noch\ nicht\ entdeckt$
10	$d[v] \leftarrow d[u] + w((u,v))$	\triangleright	$Berechne\ obere\ Schranke$
11	$p[v] \leftarrow u$	\triangleright	$Speichere\ u\ als\ Vorgänger\ von\ v$
12	$\mathrm{Enqueue}(v,d[v],Q)$	\triangleright	$F\ddot{u}ge\ v\ zu\ Q\ hinzu$
13	else if $d[u] + w((u,v)) < d[v]$ then	\triangleright	Kürzerer Weg zu v entdeckt
14	$d[v] \leftarrow d[u] + w((u,v))$	\triangleright	$Aktualisiere\ obere\ Schranke$
15	$p[v] \leftarrow u$	\triangleright	$Speichere\ u\ als\ Vorgänger\ von\ v$
16	Decrease-Key(v,d[v],Q)	\triangleright	Setze Priorität von v herab

Dijkstra's Runtime Analysis

```
INITIALIZE-SINGLE-SOURCE(G, s)

1 for each vertex v \in G. V

2 v.d = \infty

3 v.\pi = \text{NIL}

4 s.d = 0
```

```
RELAX(u, v, w)

1 if v.d > u.d + w(u, v)

2 v.d = u.d + w(u, v)

3 v.\pi = u
```

with a binary min-heap that includes a way to map between vertices and their corresponding heap elements. Each EXTRACT-MIN operation then takes $O(\lg V)$ time. As before, there are |V| such operations. The time to build the binary min-heap is O(V). (As noted in Section 21.2, you don't even need to call BUILD-MIN-HEAP.) Each DECREASE-KEY operation takes $O(\lg V)$ time, and there are still at most |E| such operations. The total running time is therefore $O((V + E) \lg V)$, which is $O(E \lg V)$ in the typical case that $|E| = \Omega(V)$. This running time improves

Introduction to Algorithms, 22.3 Dijkstra's Algorithm Analysis

Q eingefügt und genau einmal aus Q entfernt wird. Wurde ein Knoten u aus Q entfernt, dann wird er niemals wieder in Q eingefügt, und sein Wert d[u] wird niemals wieder verändert. Der Grund ist, dass für alle später aus Q entfernten Knoten x der Wert d[x] mindestens so gross wie d[u] ist; folglich ist der Vergleich in Schritt 13 niemals erfüllt. Da jeder

```
DIJKSTRA(G, w, s)
 1 INITIALIZE-SINGLE-SOURCE(G, s)
 2S = \emptyset
 3Q = \emptyset
 4 for each vertex u \in G. V
     INSERT(Q, u)
 6 while Q \neq \emptyset
     u = \text{EXTRACT-MIN}(Q)
     S = S \cup \{u\}
     for each vertex v in G.Adj[u]
        RELAX(u, v, w)
10
        if the call of RELAX decreased v.d
            DECREASE-KEY(Q, v, v.d)
```

Introduction to Algorithms, 22.3 Dijkstra's Algorithm Analysis

Example on Blackboard

Dijk	STRA(G = (V, E), s)	
1	for each $v \in V \backslash \{s\}$ do	⊳ Initialisiere für alle Knoten die
2	$d[v] \leftarrow \infty; p[v] \leftarrow \mathbf{null}$	$ riangleright Distanz\ zu\ s\ sowie\ Vorgänger$
3	$d[s] \leftarrow 0; p[s] \leftarrow \mathbf{null}$	$ riangleright Initialisierung\ des\ Startknotens$
4	$Q \leftarrow \emptyset$	${} {\triangleright}\ Leere\ Priorit\"{a}tswarteschlange}\ Q$
5	Insert(s, 0, Q)	$ ightharpoonup F\ddot{u}ge\ s\ zu\ Q\ hinzu$
6	while $Q \neq \emptyset$ do	
7	$u \leftarrow \text{Extract-Min}(Q)$	\triangleright Aktueller Knoten
8	for each $(u,v) \in E$ do	\triangleright Inspiziere Nachfolger
9	$\mathbf{if}\ p[v] = \mathbf{null}\ \mathbf{then}$	$\triangleright v$ wurde noch nicht entdeckt
10	$d[v] \leftarrow d[u] + w((u,v))$	\triangleright Berechne obere Schranke
11	$p[v] \leftarrow u$	\triangleright Speichere u als Vorgänger von v
12	$\mathrm{Enqueue}(v,d[v],Q)$	$ ightharpoonup F\ddot{u}ge\ v\ zu\ Q\ hinzu$
13	else if $d[u] + w((u, v)) < d[v]$ then	$ ightharpoonup K\"{u}rzerer\ Weg\ zu\ v\ entdeckt$
14	$d[v] \leftarrow d[u] + w((u,v))$	\triangleright Aktualisiere obere Schranke
15	$p[v] \leftarrow u$	\triangleright Speichere u als Vorgänger von v
16	Decrease-Key(v,d[v],Q)	ightharpoonup Setze Priorität von v herab

What should I learn for CodeExpert?

- The variants differ mostly in the usage of the data structure storing the vertices
 - Normal queue, priority queue, start with all vertices in the queue, only insert the start vertex in the queue at the start, decrease key, re-insert vertices...

Java's PriorityQueue

All Methods	Instance Methods	Concrete Methods		
Modifier and Type		Method and Description		
boolean		<pre>add(E e) Inserts the specified element int</pre>		
void		clear() Removes all of the elements from		
Comparator super E		<pre>comparator() Returns the comparator used to</pre>		
boolean		contains(Object o) Returns true if this queue conta		
Iterator <e></e>		iterator() Returns an iterator over the elements		
boolean		offer(E e) Inserts the specified element int		
E		<pre>peek() Retrieves, but does not remove,</pre>		
E		poll() Retrieves and removes the head		
boolean		remove(Object o) Removes a single instance of the		
int		size() Returns the number of elements		
Spliterator <e></e>		<pre>spliterator() Creates a late-binding and fail-</pre>		
Object[]		toArray() Returns an array containing all		
<t> T[]</t>		toArray(T[] a) Returns an array containing all		

No decrease key method?

Re-Insertion instead decrease key

- Instead of decreasing the key, we could also just reinsert the node again (allowing for the same node appearing multiple times in the priority queue) but with the decreased priority.
- Questions that naturally arise are: How does this re-insertion affect the runtime? How does it change the pseudocode and concrete implementation?

Re-insertion runtime analysis (informally)

- We add nodes when we reach them through an edge (inner for loop). Thus we have at most |E| insert operations.
- The while loop breaks only if the queue is empty. Thus we also have |E| dequeue operations (extract and delete from queue).
- Denoting the time it takes for an insert operation with T_i and the time it takes for an dequeue operation with T_d we get $O(|E| \cdot T_i + |E| \cdot T_d)$.
- If n is the size of a heap, we already learned that both dequeue and insert is in $O(\log n)$ (recall of repair heap).
- Now what is the size of the heap? Since we have at most |E| insert operations that is also our size.

Re-insertion runtime analysis (informally)

- Both T_i and T_d are in $O(\log |E|)$, thus $O(|E| \cdot T_i + |E| \cdot T_d) = O(|E| \cdot \log |E|)$
- Notice that for simple connected graphs $O(\log |E|) = O(\log |V|)$ since $|V|-1 \le |E| \le {|V| \choose 2} \le |V|^2$
- Therefore we have $O(|E| \cdot \log |E|) = O(|E| \cdot \log |V|)$ for simple connected graphs

Re-insertion vs. decrease key runtime

 The re-insertion version has actually been found to achieve faster computing times in practice, which this paper shows:

Priority Queues and Dijkstra's Algorithm *

```
Mo Chen † Rezaul Alam Chowdhury ‡ Vijaya Ramachandran §
David Lan Roche ¶ Lingling Tong ||
```

UTCS Technical Report TR-07-54

October 12, 2007

1.2 Summary of Experimental Results

Briefly here are the conclusions of our experimental study:

• During in-core computations involving real-weighted sparse graphs such as undirected $\mathcal{G}_{n,m}$, road networks, and directed power-law, implementations based on DIJKSTRA-NODEC ran faster (often significantly) than DIJKSTRA-DEC implementations. However, this performance gap narrowed as the graphs became denser.

Java Implementation (from my github repo)

```
public int[] dijkstra(ArrayList<ArrayList<Edge>> G, int n, int start) {
   int[] P = new int[n]; // store predecessors of nodes
   int[] D = new int[n]; // store distance from start to nodes
    for (int i = 0; i < n; ++i) D[i] = Integer.MAX_VALUE;</pre>
    D[start] = 0;
    PriorityQueue<Node> PQ = new PriorityQueue<>();
    PQ.add(new Node(start, 0));
    while (!PQ.isEmpty()) {
       Node u = PQ.poll();
       if (D[u.key] < u.dist) continue; // already found shorter distance</pre>
       for (Edge edge : G.get(u.key)) {
            int v = edge.to;
            int d = D[u.key] + edge.weight;
            if (d < D[v]) {
                D[v] = d;
                P[v] = u.key;
                PQ.add(new Node(v, D[v]));
    return D;
```