Eidgendssische Ecole polytechnique fédérale de Zurich
Technische Hochschule Politecnico federale di Zurigo
Zirich Federal Institute of Technology at Zurich

Departement of Computer Science 20 November 2023
Johannes Lengler, David Steurer
Lucas Slot, Manuel Wiedmer, Hongjie Chen, Ding Jingqiu

Algorithms & Data Structures Exercise sheet 9 HS 23

The solutions for this sheet are submitted at the beginning of the exercise class on 27 November 2023.
Exercises that are marked by * are challenge exercises. They do not count towards bonus points.

You can use results from previous parts without solving those parts.

Exercise 9.1 Transitive graphs.

Let G = (V, E) be an undirected graph. We say that G is
« transitive when, for any two edges {u, v} and {v,w} in F, the edge {u, w} is also in E;
« complete when its set of edges is {{u, v} | u,v € V,u # v};

« thedisjointunionof G; = (V41, Ey),...,Gy = (Vi, Ey) it V = ViU- - .UV}, E = E1U- - -UE,
and the (V};)1<i<j are pairwise disjoint.

Show that a undirected graph G is transitive if, and only if, it is a disjoint union of complete graphs.

Exercise 9.2 Short statements about graphs (cont’d) (1 point).

In the following, let G = (V, E) be a directed graph. For each of the following statements, decide
whether the statement is true or false. If the statement is true, provide a proof; if it is false, provide a
counterexample.

(a) If for every vertex v € V its in-degree deg;,(v) is even, then |E)| is even.
(b) For a longest directed path P : vy, ..., vy in G, the endpoint has to be a sink.

(c) The following graph has a topological sorting. If so, give a topological sorting; if not, prove why no
topological sorting can exist.

Exercise 9.3 Data structures for graphs.
Consider three types of data structures for storing an undirected graph GG with n vertices and m edges:
1) Adjacency matrix.

2) Adjacency lists:

(1 2F43f14445 |

5 24—+ 1 |
44+ 1 |

3) Adjacency lists, and additionally we store the degree of each node, and there are pointers between
the two occurences of each edge. (An edge appears in the adjacency list of each endpoint).

3 4 [5

(2 awsf— 4
3 1
EE SN Sy o
|5 wrh—f 4 Ml |
Gob {2

For each of the above data structures, what is the required memory (in ©-Notation)?

Which runtime (worst case, in ©-Notation) do we have for the following queries? Give your answer
depending on n, m, and/or deg(u) and deg(v) (if applicable).

(a) Input: A vertex v € V. Find deg(v).

(b) Input: A vertex v € V. Find a neighbor of v (if a neighbor exists).

(c) Input: Two vertices u, v € V. Decide whether u and v are adjacent.

(d) Input: Two adjacent vertices u,v € V. Delete the edge ¢ = {u, v} from the graph.

(e) Input: A vertex u € V. Find a neighbor v € V of u and delete the edge {u, v} from the graph.

(f) Input: Two vertices u,v € V with u # v. Insert an edge {u, v} into the graph if it does not exist
yet. Otherwise do nothing.

(g) Input: A vertex v € V. Delete v and all incident edges from the graph.

For the last two queries, describe your algorithm.

Exercise 9.4 Number of paths in DAGs (1 point).

Let G = (V, E) be a directed graph without directed cycles' (i.e., a directed acyclic graph or short
DAG). Assume that V' = {v1,...,v,} (for n = |V| € N). Further assume that v; is a source and v, is

'A directed cycle is a closed directed walk of length at least 2 for which all vertices are pairwise distinct except the
endpoints.

a sink. The goal of this exercise is to find the number of paths from v; to v,,.
(a) Prove that there exists a topological sorting of GG that has v; as first and v,, as last vertex.

Using part (a), we assume from now on that the sorting vy, v, ..., v, of the vertices is a topological
sorting. We can achieve this by renaming the vertices. Part (a) tells us then that we do not need to
rename v1 and v,,.

(b) Prove that for any directed v1-v,-path P : v = vy, v4,,...,v;, = v, We have ig < i1 < --- < iy.

(c) Describe a bottom-up dynamic programming algorithm that, given a graph G with the property
that v1,...,v, is a topological sorting, returns the number of v1-v,, paths in G in O(|V| + |E|)
time. You can assume that the graph is provided to you as a pair (n, Adj) of the integer n = |V/|
and the adjacency lists Adj. Your algorithm can access Adj[u], which is a list of vertices to which
u has a direct edge, in constant time. Formally, Adj[u] := {v € V' | (u,v) € E}.

In your solution, address the following aspects:
1. Dimensions of the DP table: What are the dimensions of the D P table?
2. Subproblems: What is the meaning of each entry?

3. Recursion: How can an entry of the table be computed from previous entries? Justify why your
recurrence relation is correct. Specify the base cases of the recursion, i.e., the cases that do not
depend on others.

4. Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

5. Extracting the solution: How can the solution be extracted once the table has been filled?
6. Running time: What is the running time of your solution?
Hint: Define the entry of the DP table as D P[i] = number of paths in G from v; to vy,.

(d)* What happens if the vertices v; and v,, are not a source respectively a sink? Can we still find the
number of v;-v,, paths using a similar approach as above?

Exercise 9.5 Strongly connected vertices (1 point).

Let G = (V, E) be a directed graph with n vertices and m edges. We say two distinct vertices v, w € V'
are strongly connected if there exists both a directed path from v to w, and from w to v.

Describe an algorithm which finds a pair v, w € V of strongly connected vertices in G, or decides that
no such pair exists. The runtime of your algorithm should be at most O(n 4+ m). You are provided with
the number of vertices n, and the adjacency list Adj of G.

Hint: Use DFS as a subroutine.

Exercise 9.2

Short statements about graphs (cont’d) (1 point).

In the following, let G = (V, E) be a directed graph. For each of the following statements, decide
whether the statement is true or false. If the statement is true, provide a proof; if it is false, provide a

counterexample.

(a) If for every vertex v € V its in-degree deg;, (v) is even, then |E| is even.

Solution:

This statement is true.

The following equality holds) - deg;,(v) = |E| since on both sides every edge is counted
exactly once. Hence, if all terms on the left side are even, then also |E| is even.

// uthtr L hawe

Tl’\(s (D bé(,@.uSé/

‘P O O\A’ AQSVCQ-

Yo (I~ %”,SM&
U . U
= 5

1 41

oux %)

7o de [= T degeu (o) = [EV

ve U/ se (/

every ed‘gg/ 0 oA s+
0/ N verte s 6ird /]
p/ Q\U\OSfL\M" ver —\'@ v

(b) For a longest directed path P : vy,. .., vy in G, the endpoint has to be a sink.

Solution:

This statement is false.
Consider the graph with three vertices

V= {/Ula ’U2,’U3}

and the following edges
E= {(0171)2)’ (’Ug, 7)3)7 (1)3; UI)}-

A longest directed path is for example v;, v2, v3. However, v3 is not a sink since it has the outgoing
edge (v3,v1).

' Remark: If the graph is assumed to have no directed cycles, i.e. we have a directed acyclic graph, then
the statement holds as was used and proven in the lecture.

/wa\\ { Ohge sf ()9\\' h éé’/hé“’\ s,

(c) The following graph has a topological sorting. If so, give a topological sorting; if not, prove why no
topological sorting can exist.

sinle Sialk

= [EELROA (1B

Exercise 9.4 Number of paths in DAGs (1 point).

Let G = (V, E) be a directed graph without directed cycles® (i.e., a directed acyclic graph or short
DAG). Assume that V' = {v1,...,v,} (for n = |V| € N). Further assume that v, is a source and vy, is

a sink. The goal of this exercise is to find the number of paths from vy to v,.

(a) Prove that there exists a topological sorting of G that has v as first and v,, as last vertex.

'A directed cycle is a closed directed walk of length at least 2 for which all vertices are pairwise distinct except the
endpoints.

Solution:

Define the graph G’ as the graph G without v; and v,, (and all incident edges). This graph is still
acyclic, so we know from the lecture that it has a topological sorting. Adding v; in the beginning of
this sorting and vy, in the end, we get a topological sorting of G. This is indeed a topological sorting
since all edges involving v; are of the form (vy,v;) for some i (v; is a source), all edges involving
vy, are of the form (v;, v,,) for some i (v, is a sink) and we started with a topological sorting of G’.

Using part (a), we assume from now on that the sorting vq, v, ..., v, of the vertices is a topological
sorting. We can achieve this by renaming the vertices. Part (a) tells us then that we do not need to
rename v and v,,.

(b) Prove that for any directed vq-v,-path P : v; = v;;,v4,,...,v;, = v, wehaveig < i3 < -+ < g

In a topological sorting of a graph, for any edge (v, w), we have that v comes before w in the
sorting. Since vy,vs, ...,y is a topological sorting of G we thus get that for any edge (v;, v;) we
have 7 < j. In particular, if we have a directed v1-v,-path P : v1 = vj,,vi;,...,Vi, = Up, then
(Vigs iy) (Viy, Vig)s - - - (vi,_,, vi,) are edges of G and thus ig < i1 < -+ < .

(c) Describe a bottom-up dynamic programming algorithm that, given a graph G with the property
that vy, ...,v, is a topological sorting, returns the number of v;-v,, paths in G in O(|V'| + |E|)
time. You can assume that the graph is provided to you as a pair (n, Adj) of the integer n = |V/|
and the adjacency lists Adj. Your algorithm can access Adj[u], which is a list of vertices to which
u has a direct edge, in constant time. Formally, Adj[u] := {v € V | (u,v) € E}.

Hint: Define the entry of the DP table as D P[i| = number of paths in G from v; to vy,.

Solution:
1. Dimensions of the DP table: DP([1...n]
2. Subproblems: D P[i] is the number of paths in G from v; to vy,.

3. Recursion: We initialise DP[n] = 1. DP can then be computed recursively as follows for i < n

DP[i] = > DPJj].
je{i+1,...,n}: (viyv;)€EE

Aollors from (b))

The reason why this holds is that every path from v; to v, is of the following form: We first
have an edge (v;, v;) and then a path from v; to v, (which might be of length 0). By part (b),
we have that j > 4, which is the reason why we only consider j € {i 4+ 1,...,n}. Thus, to get
the number of paths from v; to v, we can sum the number of v;-v;, paths for all out-neighbors
v; of v; (which satisfy j > ¢ since vy, v, ..., v, is a topological sorting). Note that if we have
the edge (v;, v;), then no v;-v,, path contains v; as the graph G is acyclic. Hence, combining an
edge (v;, vj) with a path from v; to vy, gives always a path (and not just a walk). This shows that
our recurrence relation is correct.

revesrdt_ tope.—0 rder

—
4. Calculation order: We can compute the entries by order of decreasing 7. Then, for computing
DPYJi] all entries DP[j] we need have already been computed.

5. Extracting the solution: The solution can be found in D P[1], by definition of the DP table.

6. Running time: Computing the ith entry of D P uses time O(deg,(v;) + 1) (the “1” is for access-
ing the first element of the list). Summing this over all vertices, we get that the total running
time is O(|V| + | E|) as wanted (using that > | deg,.(v;) = |E|).

Mg vould Jrz)po.—ocrdw not worh 7

R 0) Remark: Note that we could have also defined the following DP table: DP'[i] = number of paths in

- G from vy tov;. One can initialise DP'[1] = 1 and find a similar recurrence relation as above for
(V4

0 t DP'[i], where we sum over all in-neighbors of v;. Using this, one can find the number of vi-v,, paths

by computing all entries in increasing order and returning D P'[n]. The problem with this approach is
that finding all in-neighbors needs time O(|V'| + | E|) since we need to go over all adjacency lists as we
are only given a list with the out-neighbors for every vertex. Thus, the run time of this solution would
be O(|V|- (V| +|E|)) instead of the wanted O(|V | + |E|).

(d)* What happens if the vertices v; and v,, are not a source respectively a sink? Can we still find the
number of v;-v, paths using a similar approach as above?

Solution:

We note that any v;-v,, path will not use an incoming edge at v, nor an outgoing edge at v,, (oth-
erwise v respectively v, would occur twice which cannot happen in a path). Hence, given any
directed acylic graph GG, we can delete all incoming edges at v; and all outgoing edges at v,,. In this
new graph G’ vy is a source and vy, is a sink. Also, G’ is still acyclic and the number of v;-v,, paths
in G’ is equal to the number of v;-v,, paths in G. Hence, to compute the number of v1-v,, paths
in G, we can equivalently compute the number of v;-v,, paths in G’. This can be done using parts
(a)—(c). Note that deleting all incoming edges at v, and all outgoing edges at v,, can be done in time
O(|V| 4+ |E|), so the overall running time of the algorithm is still O(|V'| + |E|). Hence, we can find
the number of v;-v;, in any directed acyclic graph G in time O(|V'| + |E)|).

1 F ..

ﬁ% porhs doesnll chewge | smce we Connot use
Fhe TR chyes fo Jet ok o Uy and
AT afte Qg ot of v Looly
NN +QJMU\5 Oy fcce (cantradi chian
to PO_PKB_ SimLaom resonmng /or Ve

Exercise 9.5 Strongly connected vertices (1 point).

Let G = (V, E) be a directed graph with n vertices and m edges. We say two distinct vertices v, w € V
are strongly connected if there exists both a directed path from v to w, and from w to v.

Describe an algorithm which finds a pair v, w € V of strongly connected vertices in G, or decides that
no such pair exists. The runtime of your algorithm should be at most O(n +m). You are provided with
the number of vertices n, and the adjacency list Adj of G.

Hint: Use DFS as a subroutine.

O—pD .. —O0

u\ . 0°¢ .

Solution:

We use the following algorithm.

Algorithm 1

: Input: integer n. Adjacency list Adj[1...n].

: Let status[1...n| be a global array, with all entries initialized to UNVISITED.

1
2
3
4:
5. function visit(u)
6 status(u] < VISITING
7
8
9

for each v in Adj[u| do > Iterate over all neighbours v.
if status[v] = VISITING then > There is a directed cycle containing v and v.
Output (u,v) and terminate
10: if status[v] = UNVISITED then
11: visit(v)
122 status|u] « VISITED.
13: foru=1,2,...,ndo
14: if status[u] = UNVISITED then
15: visit[u]

16: Output “no strongly connected vertices exist”

The algorithm above uses DFS to determine if there is a directed cycle in G. As we traverse the graph
at most once, its runtime is at most O(n + m).

Note that at any point during the algorithm there is a directed path from any vertex v with status[v] =
VISITING to the current vertex u. Therefore, if u has a neighbour v with status[v] = VISITING,
there must be a directed cycle containing both v and v. But that means u and v are strongly connected.

The algorithm only terminates if a directed cycle is found, or when all vertices have status VISITED.
In the latter case, no directed cycle exists in the graph.

