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Algorithms & Data Structures Exercise sheet 0 HS 23

�e solutions for this sheet do not have to be submi�ed. �e sheet will be solved in the �rst exercise
session on 25.09.2023.

Exercises that are marked by ⇤ are challenge exercises.

Exercise 0.1 Induction.

a) Prove by mathematical induction that for any positive integer n,

1 + 2 + · · ·+ n =
n(n+ 1)

2
.

b) (�is subtask is from August 2019 exam). Let T : N ! R be a function that satis�es the
following two conditions:

T (n) � 4 · T (n2 ) + 3n whenever n is divisible by 2;
T (1) = 4.

Prove by mathematical induction that

T (n) � 6n2 � 2n

holds whenever n is a power of 2, i.e., n = 2k with k 2 N0.

Asymptotic Growth
When we estimate the number of elementary operations executed by algorithms, it is o�en useful to
ignore smaller order terms, and instead focus on the asymptotic growth de�ned below. We denote by
R+ the set of all (strictly) positive real numbers and by R+

0 the set of nonnegative real numbers.

De�nition 1. Let f, g : N ! R+ be two functions. We say that f grows asymptotically faster than g if
lim
n!1

g(n)
f(n) = 0.

�is de�nition is also valid for functions de�ned on R+ instead of N. In general, lim
n!1

g(n)
f(n) is the same

as lim
x!1

g(x)
f(x) if the second limit exists.

Exercise 0.2 Comparison of functions part 1.

Show that

a) f(n) := n log n grows asymptotically faster than g(n) := n.
























































































































b) f(n) := n3 grows asymptotically faster than g(n) := 10n2 + 100n+ 1000.

c) f(n) := 3n grows asymptotically faster than g(n) := 2n.

�e following theorem can be useful to compute some limits.

�eorem 1 (L’Hôpital’s rule). Assume that functions f : R+ ! R+ and g : R+ ! R+ are di�erentiable,
lim
x!1

f(x) = lim
x!1

g(x) = 1 and for all x 2 R+, g0(x) 6= 0. If lim
x!1

f 0(x)
g0(x) = C 2 R+

0 or lim
x!1

f 0(x)
g0(x) = 1,

then
lim
x!1

f(x)

g(x)
= lim

x!1

f 0(x)

g0(x)
.

Exercise 0.3 Comparison of functions part 2.

Show that

a) f(n) := n1.01 grows asymptotically faster than g(n) := n lnn.

b) f(n) := en grows asymptotically faster than g(n) := n.

c) f(n) := en grows asymptotically faster than g(n) := n2.

d)⇤ f(n) := 1.01n grows asymptotically faster than g(n) := n100.

e)⇤ f(n) := log2 n grows asymptotically faster than g(n) := log2 log2 n.

f)⇤ f(n) := 2
p

log2 n grows asymptotically faster than g(n) := log1002 n.

g)⇤ f(n) := n0.01 grows asymptotically faster than g(n) := 2
p

log2 n.

Exercise 0.4 Simplifying expressions.

Simplify the following expressions asmuch as possible without changing their asymptotic growth rates.

Concretely, for each expression f(n) in the following list, �nd an expression g(n) that is as simple as
possible and that satis�es lim

n!1
f(n)
g(n) 2 R+.

It is guaranteed that all functions in this exercise take values in R+ (you don’t have to prove it).

a) f(n) := 5n3 + 40n2 + 100

b) f(n) := 5n+ lnn+ 2n3 + 1
n

c) f(n) := n lnn� 2n+ 3n2

d) f(n) := 23n+ 4n log5 n
6 + 78

p
n� 9
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e) f(n) := log2
p
n5 +

p
log2 n5

f)⇤ f(n) := 2n3 +
�

4
p
n
�log5 log6 n +

�
7
p
n
�log8 log9 n

Exercise 0.5⇤ Finding the range of your bow.

To celebrate your start at ETH, your parents gi�ed you a bow and (an in�nite number of) arrows. You
would like to determine the range of your bow, in other words how far you can shoot arrows with it.
For simplicity we assume that all your arrow shots will cover exactly the same distance r, and we de�ne
r as the range of your bow. You also know that this range is at least r � 1 (meter).

You have at your disposition a ruler and a wall. You cannot directly measure the distance covered by
an arrow shot (because the arrow slides some more distance on the ground a�er reaching distance r),
so the only way you can get information about the range r is as follows. You can stand at a distance `
(of your choice) from the wall and shoot an arrow: if the arrow reaches the wall, you know that `  r,
and otherwise you deduce that ` > r. By performing such an experiment with various choices of the
distance `, you will be able to determine r with more and more accuracy. Your goal is to do so with as
few arrow shots as possible.

a) What is a fast strategy to �nd an upper bound on the range r ? In other words, how can you
�nd a distance D � 1 such that r < D, using few arrow shots ? �e required number of shots
might depend on the actual range r, so we will denote it by f(r). Good solutions should have
f(r)  10 log2 r for large values of r.

b) You are now interested in determining r up to some additive error. More precisely, you should �nd
an estimate r̃ such that the range is contained in the interval [r̃ � 1, r̃ + 1], i.e. r̃ � 1  r  r̃ + 1.
Denoting by g(r) the number of shots required by your strategy, your goal is to �nd a strategy with
g(r)  10 log2 r for all r su�ciently large.

c) Coming back to part (a), is it possible to have a signi�cantly faster strategy (for example with f(r) 
10 log2 log2 r for large values of r) ?
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