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Disclaimer

The following guide is not part of the official lecture material and is subject to
ongoing revision.

Sections that are marked with (*) are not lecture relevant. Examples are marked
with x, which indicate the difficulty level (more stars is more difficult). Try solving
the examples before reading hints or the solution.



1 Introduction

Imagine you have two algorithms A and B. How do you measure, which one is
better?

One way to measure this is by comparing the runtime of each algorithm, i.e. the
time it takes for the algorithm to do, what it’s supposed to do. In this lecture,
when we talk about runtime we really talk about the number of elementary oper-
ations that are executed until the algorithm terminates (instead of e.g. seconds).

Since the input size for algorithms of real world problems is usually very large,
it only makes sense to look at the runtime using very large input sizes. Here is
where limits come into play. Instead of looking at runtimes of algorithms using
a fixed input size, we want to observe how runtimes behave as the input size grows.

When we asked ourselves which algorithm is better, we were essentially looking
for a way of categorising algorithms according to their runtime. This is exactly
what O-notation allows us to do.

In computer science, O-notation is used to classify algorithms according
to how their runtime grows as the input size grows.

2 O-notation

2.1 Set Definitions
Here is the definition of O(f) taken from the script.

O(f) == {g: N = R | there exists ¢ > 0,ng € N such that g(n) < c¢f(n) for all n > ng}
So what does that mean? I will translate it from mathematical notation to words:

O(f) = “in this set are all functions g, that fulfil a certain property.
Namely, these functions must be smaller than the function f multiplied
by some positive constant c. However, g can be bigger than f multiplied
by ¢ for some time as long as there exists some point ng, after which g
will be smaller than f multiplied by ¢ forever.”

Consider figure [I} If I were to ask you, is the function g in O(f), you'd see that,
yes, after the functions meet at the red dot (we find ny = 4), the function g will
be smaller than f multiplied by some constant forever. Thus g € O(f).



Figure 1: The functions g(n) = n (green) and f(n) = n? — 12 (blue).
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We say: “g is bounded above by f asymptotically”.

Now what about 27
Q(f) ={g9: N—= R" | es gibt ¢ > 0,n9 € N so, dass g(n) > cf(n) fiir alle n > ng}

Notice how the definitions of O and €2 only differ at the bigger/smaller sign. Com-
ing back to our image from earlier, if the green line is the function g(n) = n and
the blue line is the function f(n) = n? — 12, can we say g € Q(f)? No, because
now we want the function g to be bigger than f multiplied by some constant c.
However, what we can say is that f € Q(g), by the same logic as earlier.

We say: “f is bounded below by g asymptotically”.

If we were to say, that a function f is bounded both above and below by a function
g, meaning g € O(f) and g € Q(f), then we say that f and g are equal asymptot-
ically. The set of functions that are asymptotically equal to a function f is what

we call O(f).
O(f) ={g: N = R" | es gibt ¢, > 0,m9 € N so, dass c1g(n) < f(n) < cag(n) fiir alle n > ng}

The way of figuring out what function belongs to which set will be covered in the
later sections!]

1You will not have to draw functions.



2.2 Limit Definitons

Theorem 1. Seien f,g: N — Rt zwei Funktionen. Dann gilt:

1. Ist lim, o0 % =0, dann ist f € O(g), und O(f) € O(g).

Q

~

2. Ist lim,,_, oo %

= C > 0 (wobei C konstant ist), dann ist f € O(g).

N N

«Q

3. Ist lim,, o % = 00, dann ist g € O(f), und O(g) € O(f).

Note that in the lecture we generally use < instead of EE]
Whenever we see an exercise like n € O(n?), we simply use the definition and
calculate some limit.

Example 1. (x) Is it true that n € O(n?)?

Solution. We just use apply Theorem [l| and calculate the resulting limit.

1
lim f(n) = lim "y

As we can clearly see, the functions f, g satisfy point 1. of Theorem [1 so we
can deduce that n € O(n?) is correct.

(*) But what is a limit anyways?

Informally, when we talk about a limit, we talk about the value a function ap-
proaches as the input approaches some other value.

For example if f is a function, n is the input and n approaches infinity (we write
n — o0), for the limit L of f as the input n approaches infinity we write:

lim f(n) =1L

n—oo

Note that the input n could approach many different kind of values (e.g. 3, —10, —oc0)
but in the lecture it approaches oo most of the time. This is because, when we
talk about the asymptotic behaviour of an algorithm, we are interested in seeing
what happens as the input size grows, i.e. it gets bigger and bigger (approaches

2This is because we are comparing functions, so we are just trying to say “some function f
grows slower/faster than some other function ¢”, which makes sense intuitively, but not mathe-
matically (since we define O(f) to be a set of functions with certain properties).



positive infinity).

But what happens behind the scenes? Intuitively, we can think of the limit of a
function in the following way:
We’ll consider the limit of a function f as its input n approaches oco. Consider

Figure 2: This image was taken from Wikipedia.
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figure 2] Note that on the = axis we have the input size n. So the further right we
go, the larger n gets.

At some point, the functions value will be effectively indistinguishable from the
limit L, or rather very very close. In the graphic this is modeled by the little
green tunnel. Notice how at some point S our function f doesn’t leave the tun-
nel anymore. Depending on the thickness of this green tunnel, the point S can be
a different point on the x axis, the important thing is just that it exists somewhere.

Coming back to the equation from earlier:

lim f(n)=L.

n—o0

What we could also say is: No matter how thick or thin our green tunnel is, there
will always be some point on the x axis, such that from this point onwards, the
function f doesn’t leave the tunnel anymore (forever).

As I have said before, this is a very informal way of describing a limit.

Again, none of this is relevant for the lecture, it should just give you some intuition.

2.3 Calculation Rules

The following theorem was taken from exercise sheet 2 from fall semester 2022
(you can find it here). I couldn’t find it in the script.


https://en.wikipedia.org/wiki/Limit_(mathematics)

Theorem 2. Let f,g,h: N — R*. If f < O(h) and g < O(h), then
1. for every constant ¢ > 0,c- f < O(h).

2. f+g9=<O(h).

Both 1. and 2. can be proven using the set definitions introduced earlier.

3 Working with Limits

Since we use limits to categorise functions according to their asymptotic behaviour,
being able to solve asymptotics exercises mainly comes down to being able to
calculate limits. For this reason, I will introduce rules and tricks that will help
with just that.

3.1 Limit Calculation Rules

Limit Calculation Rules: Let f,g be two functions. If the limits
lim,, o0 f(n) and lim, o g(n) existff then:

1. lim, oo (f(n) £ g(n)) = lim, o f(n) £ lim,, 00 g(n).

2. lim,o0(c1 - f(n) + ¢c2) = ¢1 - (lim, 00 f(n)) + ¢2, for some constants
C1,C2

3. limy, 00 f(n) - g(n) = lim, 00 f(n) - limy, 00 g(0).

4. lim,,_ % = M, if lim,, o, g(n) # 0.

limy,— 00 g(n

®There are in fact limits that don’t exist, e.g. lim, . (—1)" or lim,,_, sin(n). How-

ever, this is not relevant for this lecture (I never encountered an asymptotics problem
where some limit didn’t exist). Still, it’s good to know.

Let’s go over an example.

20232—n

Example 2. (x) Determine the following limit: lim, ., =3

Solution.
20232 —n . 20232 n 20232 1
lim ——— = lim — — = lim - —.
n—00 n2 n—oo N2 n2 n—oo N2 n



Now we apply rule 1. to obtain:

20232 1 20232 o1 20232
lim — — = lim — lim — = lim —
n—oo ’rL2 n n—oo ’rL2 n—oo M, n—oo n2

0.

To determine the first limit, we use rule 2. with ¢; = 20232, ¢y = 0:

20232 1
lim —0=2023%". lim — — 0.

n—oo M n—oo M

1.

_n'

Now we can use rule 3. for f(n) = g(n)

1 1 1
20232 lim — — 0=2023%- lim —- lim — —0=2023-0-0—0=0.

n—o0 n2 n—oo 1, n—oo N,

Thus

2 _
lim 2023 —n _0

n—oo 77,2

Note that you don’t have to be that rigorous, I just wanted to show as many rules
as possible. This solution would have been totally fine as well:

Solution.

20232 — 1 1
m 29237 90932 lim & — fim L — 0.

n—oo n2 n—oo n2 n—oo M,

3.2 Exponent-Limit Trick

Exponent-Limit Trick: Let f, g be two functions. If f is continuoud”| then:

lim f(n)d™ = lim f(n)mn—ee 9

n—oo n—oo

@A very simple intuition for continuous functions is the following: A function is con-
sidered continuous if you can draw them without lifting your pen (a continuous pen stroke,
without any jumps). You will learn about continuous functions and why it matters in
Analysis 1, in the second semester. For this lecture, it doesn’t really matter.

Example 3. (x) Determine the following limit: lim,, e



Solution. The function e” is continuous, thus we have:

. 2023 .
lim e»% = lim e
n—oo n—oo

2023

limp— 0o 3
n .

We determine the limit in the exponent by applying the rules from earlier:

2023
lim

n—00 n3

=2023-0=0.

Coming back to the original problem, we have:

2023

. li 2023 . .
lim ¢"™r=>* %3 = lim ¢ = lim 1 = 1.
n—oo n—oo n—oo
Thus
. 2023
lim e =3 =1.
n—0o0

Common continuous functions that you will encounter in AnD are: €™ and logn.

3.3 L’Hopital’s Rule

Theorem 3 (Bernoulli-de L’Hépital). Let f, g be two differentiable func-

tions, such that ¢’ # 0. If either lim,, % = “%” or lim,,_, % = 427
then:

lim ) = lim fn)

wee g(n) e ()

My guess is that most students will be familiar with derivatives from school (if not
I would recommend looking at basic derivation rules).

Just like with continuous functions, I haven’t encountered functions that weren’t
differentiable in AnD a single time. The most important part is that the limit is
of the form “=” or “8” then you should be good to go.

Common differentiable functions that you will encounter in AnD are: €™, logn and
all polynoms (e.g. n? +n + 1).

Example 4. (x) Determine the following limit: lim,,_., &



Solution. The limit is of the form “=” as both n and e™ get bigger and bigger.

oo 7

We apply L’Hoépital’s rule for f(n) = e™ and g(n) = n, where f'(n) = €™ and
g'(n) =1

. e . e .
lim — = lim — = lim " = oo.
n—oo N n—00 n—00

Example 5. (x) Determine the following limit: lim,, Z—Z
Hint: We can also apply L’Hopital multiple times.

Solution. The limit is of the form “27, as both n® and e" get bigger and

bigger. We apply L’Hopital’s rule three times for f(n) = e and g(n) = n3,

where f'(n) = f”(n) = f”(n) = " and ¢'(n) = 3n?,¢"(n) = 6n,g"(n) = 6:

n n

n n
. € . . e . e 1 .
lm — =lim — = lim — = lim — = - lim €" = oo.
n—oo N3 n—oo 3n2 n—oo 01 n—oo 0O 6 n—ooo

e

3.4 Logarithm and Exponent Rules

Another thing that is very helpful many topics in AnD are various logarithm and
exponentiation rules. Here are a few that I consider the most important one’s for
AnD. For a complete list please refer to the internet.

Logarithm Rules:
1. log, z -y = log, z + log, y.
2. log, % = log, x — log, y.

3. log, 2" =n-log, .

4. log, b= 1125—02.
5. log, b= @.

Exponent Rsles:

1. ™. g" = g™ "
m —
9. 2 = gmon,

10



Y y"
5 g =1l
6. x_”—mln
7. xn = Y™

Example 6. (x) Is it true that Inn*? < ©(Inn2°23)?

Solution. Consider the following limit lim,, . % We use logarithm rule

3. on both the nominator and denominator to get:

In n*? . 42 -1lnn . 42 42

T R P L 42z 42
nbto Inn2028  nhoe 2023 - Inm | nsee 2023 2023

Since % is just some constant we see that statement 2. from Theorem

holds, thus we can conclude:

Inn* < O(Inn**%).

3.5 e" - Trick

Now that we know common logarithm and exponentiation rules, I want to intro-
duce another trick that can be useful at times:

e™™ - Trick: Let f be some function. We have: f(n) = ™/™ for all n,
where Inn denotes log, n, the so-called natural logarithm.

Example 7. (xx) Determine the following limit: lim,, ., /n

Hint 1: The solution requires multiple rules and tricks that we have learned.
Hint 2: Can you rewrite {/n and apply some trick involving exponents?

11



Solution. We rewrite {/n to nw= and apply the e - trick.

1 1 )
Innn Innn __ =.Inn

. . 1 . . .
lim ¥/n= lim n» = lim e = lim e lim en
n—o0 n—oo n—o0 n—oo n—o0

We know that e” is continuous, thus we get:

hrn e%-lnn — hm elimn%oo%-lnn
n—00 n—00

Now we look at the limit in the exponent separately. lim,, .o, thn is of the

form “=” we use L’Hopital:
1
Inn = 1
lim — = lim & = lim — =0.
n—oo N n—oo 1 n—oo 1

Putting everything together we get:
lim /n = lim emn—e A= fim ¢ = lim 1= 1.
n—00 n—00 n—00 n—o0

3.6 Estimation Tricks for > and []

In some situations, using estimations instead of the actual terms can be very
helpful.
Consider the following example:

Example 8. (x) Is it true that ;' ;i < O(n?)?

Solution. If you already know about Gauss’ summation formula this problem

becomes ™ "H < O(n?) which is obviously true.

But how about if we don’t? We can try to approximate the sum. Since the @
is always smaller or equal to n, we just substitute ¢ with the largest value n.

Zz<2n—n+ -+ n =n?<O(n).

n- tlmes

The direction of the smaller equal sign is very important here! When we
want to show that something is in O(f) using approximations, we have to
use approximations that are larger.

12



Example 9. (xx) s it true that Inn! < O(nlnn)7]

gl =1-2-3--(n—1)-n.
Hint: Can you use logarithm rules?

Solution. Notice that:
Inn!=In(1-2---(n—1)-n).

We use logarithm rules to get:
In(1-2---(n—1)-n) :Zlni.
i=1

We approximate the sum:

ilni < ilnn < O(nlnn).
i=1 i=1

Example 10. (%) Is it true that n! < O(n™?)7

®This exercise was taken from exercise sheet 4 of fall semester 2022, you can find it
here. On the sheet it was noted:“Note that the last claim is challenge. It was one of
the hardest tasks of the exam. If you want a 6 grade, you should be able to solve such
exercises.”

Solution. TODO.

4 Miscellaneous
4.1 Master Theorem

TODO.

4.2 Why the logarithm base doesn’t matter for O-notation

The base of the logarithm doesn’t have to be written in O-notation, i.e. O(log, n)
becomes O(logn).

13


https://cadmo.ethz.ch/education /lectures /HS22/DA/index.html

Can you see why? You should be able to prove this using everything we have
learned so far.

Solution. Let a,b > 1 be some arbitrary bases for the logarithms. Using
logarithm rules we get:

thus we have:
log, n - log, a = log;, n.

Since a, b were chosen arbitrarily, we just showed that we can write a log-
arithm of any base, as a logarithm with some other base, multiplied by a
constant factor which doesn’t change anything about the asymptotics as
stated in theorem 2l

4.3 Stirling Approximation

Something that can be useful in some cases is the so-called Stirling approximation
nl=1-2---nx 27m(%)n.

TODO
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